182 resultados para ULTRACOLD ATOMS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ligands 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic-11-methylphosphonic acid (H(5)te3a1p) and 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic acid (H(3)te3a) were synthesized, the former one for the first time. The syntheses of these ligands were achieved from reactions on 1,4,8,11-tetraazacyclotetradecane-1,4,8-tris( carbamoylmethyl) hydroiodide (te3am center dot HI), and compounds (Hte3am)(+), 1, and (H(7)te3a1p)(2+), 4, were characterized by X-ray diffraction. Structures of two other compounds resulting from side-reactions, (H(2)te2lac)(2+), 2, and (H(4)te2a2p(OEt2))(2+), 3, were also determined by X-ray diffraction. Potentiometric titrations of H(5)te3a1p and H(3)te3a were performed at 298.2 K and ionic strength 0.10 mol dm(-3) in NMe4NO3 to determine their protonation constants. H-1 and P-31 NMR titrations of H(5)te3a1p were carried out in order to determine the very high first protonation constant of this ligand and to elucidate the sequence of protonation. Potentiometric studies of the two ligands with Ca2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ metal ions performed in the same experimental conditions showed that the complexes of H5te3a1p present very high thermodynamic stability while complexes of H(3)te3a, particularly Co2+ and Zn2+, are even more stable. P-31 NMR spectra of the cadmium(II) complex of H(5)te3a1p showed that the phosphonate moiety was coordinated to the metal ion. The UV-vis-NIR spectroscopic data and magnetic moment values of Co2+ and Ni2+ complexes of H(5)te3a1p and H(3)te3a together with the EPR of the corresponding Cu2+ complexes indicated that all these complexes adopt distorted octahedral coordination geometries in solution. This was confirmed by the single crystal structure of [Cu-2(Hte3a)(H2O)(3)Cl]Cl-0.5(ClO4)(0.5) center dot 2H(2)O that showed two distorted octahedral copper centres bridged by a N-acetate pendant arm with a Cu center dot center dot center dot Cu distance of 4.890(1) angstrom. The first one is encapsulated into the macrocyclic cavity surrounded by four nitrogen and two oxygen donors from the macrocycle, whereas the second one is on the periphery of the macrocycle and is coordinated to two oxygen atoms of one acetate pendant arm in chelating fashion, one chloride and three water molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enantio-specific interactions on intrinsically chiral or chirally modified surfaces can be identified experimentally via comparison of the adsorption geometries of similar nonchiral and chiral molecules. Information about the effects of substrate-related and in interactions on the adsorption geometry of glycine, the only natural nonchiral amino acid, is therefore important for identifying enantio-specific interactions of larger chiral amino acids. We have studied the long- and short-range adsorption geometry and bonding properties of glycine on the intrinsically chiral Cu{531} surface with low-energy electron diffraction, near-edge X-ray absorption One structure spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. For coverages between 0.15 and 0.33 ML (saturated chemisorbed layer) and temperatures between 300 and 430 K, glycine molecules adsorb in two different azimuthal orientations, which are associated with adsorption sites on the {110} and {311} microfacets of Cu{531}. Both types of adsorption sites allow a triangular footprint with surface bonds through the two oxygen atoms and the nitrogen atom. The occupation of the two adsorption sites is equal for all coverages, which can be explained by pair formation due to similar site-specific adsorption energies and the possibility of forming hydrogen bonds between molecules on adjacent {110} and {311} sites. This is not the ease for alanine and points toward higher site specificity in the case of alanine, which is eventually responsible for the enantiomeric differences observed for the alanine system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two different ways of performing low-energy electron diffraction (LEED) structure determinations for the p(2 x 2) structure of oxygen on Ni {111} are compared: a conventional LEED-IV structure analysis using integer and fractional-order IV-curves collected at normal incidence and an analysis using only integer-order IV-curves collected at three different angles of incidence. A clear discrimination between different adsorption sites can be achieved by the latter approach as well as the first and the best fit structures of both analyses are within each other's error bars (all less than 0.1 angstrom). The conventional analysis is more sensitive to the adsorbate coordinates and lateral parameters of the substrate atoms whereas the integer-order-based analysis is more sensitive to the vertical coordinates of substrate atoms. Adsorbate-related contributions to the intensities of integer-order diffraction spots are independent of the state of long-range order in the adsorbate layer. These results show, therefore, that for lattice-gas disordered adsorbate layers, for which only integer-order spots are observed, similar accuracy and reliability can be achieved as for ordered adsorbate layers, provided the data set is large enough.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low-energy electron diffraction (LEED) pattern of the step-kinked Pt{531} surface at 200 K shows energy-dependent cancellation of diffraction spots over unusually large energy ranges, up to 100 eV. This cannot be reproduced theoretically when a flat surface geometry is assumed. A relatively simple model of roughening, however, involving 0.25 ML of vacancies and adatoms leads to very good agreement with the experiment. The cancellation of intensities within a very narrow range of adatom or vacancy coverages is caused by the interference of electrons emerging from different heights but similar local environments. This is a rare example where the energy dependence of integrated LEED spot intensities is dramatically affected by the long-range arrangement of atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of the mixed p(3x3)-(3OH+3H(2)O) phase on Pt{111} has been investigated by low-energy electron diffraction-IV structure analysis. The OH+H2O overlayer consists of hexagonal rings of coplanar oxygen atoms interlinked by hydrogen bonds. Lateral shifts of the O atoms away from atop sites result in different O-O separations and hexagons with only large separations (2.81 and 3.02 angstrom) linked by hexagons with alternating separations of 2.49 and 2.81/3.02 A. This unusual pattern is consistent with a hydrogen-bonded network in which water is adsorbed in cyclic rings separated by OH in a p(3x3) structure. The topmost two layers of the Pt atoms relax inwards with respect to the clean surface and both show vertical buckling of up to 0.06 angstrom. In addition, significant shifts away from the lateral bulk positions have been found for the second layer of Pt atoms. (C) 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface geometries of the p (root7- x root7)R19degrees-(4CO) and c(2 x 4)-(2CO) layers on Ni {111} and the clean Ni {111} surface were determined by low energy electron diffraction structure analysis. For the clean surface small but significant contractions of d(12) and d(23) (both 2.02 Angstrom) were found with respect to the bulk interlayer distance (2.03 Angstrom). In the c(2 x 4)-(2CO) structure these distances are expanded, with values of d(12) = 2.08 Angstrom and d(23) = 2.06 Angstrom and buckling of 0.08 and 0.02 Angstrom, respectively, in the first and second layer. CO resides near hcp and fcc hollow sites with relatively large lateral shifts away from the ideal positions leading to unequal C-Ni bond lengths between 1.76 and 1.99 Angstrom. For the p(root7- x root7-)R19'-(4CO) layer two best fit geometries were found, which agree in most of their atomic positions, except for one out of four CO molecules, which is either near atop or between bridge and atop. The remaining three molecules reside near hcp and fcc sites, again with large lateral deviations from their ideal positions. The average C Ni bond length for these molecules is, however, the same as for CO on hollow sites at low coverage. The average CNi bond length at hollow sites, the interlayer distances, and buckling in the first Ni layer are similar to the c(2 x 4)(2CO) geometry, only the buckling in the second layer (0.08 Angstrom) is significantly larger. Lateral and vertical shifts of the Ni atoms in the first layer lead to unsymmetric environments for the CO molecules, which can be regarded as an imprint of the chiral p(root7- x root7-)R19degrees lattice geometry onto the substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combination of photoelectron spectroscopy, temperature programmed desorption and low energy electron diffraction structure determinations have been applied to study the p(2 x 2) structures of pure hydrogen and co-adsorbed hydrogen and CO on Ni {111}. In agreement with earlier work atomic hydrogen is found to adsorb on fcc and hcp sites in the pure layer with H-Ni bond lengths of 1.74Angstrom. The substrate interlayer distances, d(12) = 2.05Angstrom and d(23) = 2.06Angstrom, are expanded with respect to clean Ni {111} with buckling of 0.04Angstrom in the first layer. In the co-adsorbed phase Co occupies hcp sites and only the hydrogen atoms on fcc sites remain on the surface. d(12) is even further expanded to 2.08Angstrom with buckling in the first and second layer of 0.06 and 0.02Angstrom, respectively. The C-O, C-Ni, and H-Ni bond lengths are within the range of values also found for the pure adsorbates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite a number of earlier studies which seemed to confirm molecular adsorption of water on close-packed surfaces of late transition metals, new controversy has arisen over a recent theoretical work by Feibelman, according to which partial dissociation occurs on the Ru{0001} surface leading to a mixed (H2O + OH + H) superstructure. Here, we present a refined LEED-IV analysis of the (root3 x root3)R30degrees-D2O-Ru{0001} structure, testing explicitly this new model by Feibelman. Our results favour the model proposed earlier by Held and Menzel assuming intact water molecules with almost coplanar oxygen atoms and out-of-plane hydrogen atoms atop the slightly higher oxygen atoms. The partially dissociated model with an almost identical arrangement of oxygen atoms can, however, not unambiguously be excluded, especially when the single hydrogen atoms are not present in the surface unit cell. In contrast to the earlier LEED-IV analysis, we can, however, clearly exclude a buckled geometry of oxygen atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low energy electron diffraction (LEED) structure determinations have been performed for the p(2 x 2) structures of pure oxygen and oxygen co-adsorbed with CO on Ni{111}. Optimisation of the non-geometric parameters led to very good agreement between experimental and theoretical IV-curves and hence to a high accuracy in the structural parameters. In agreement with earlier work atomic oxygen is found to adsorb on fee sites in both structures. In the co-adsorbed phase CO occupies atop sites. The positions of the substrate atoms are almost identical, within 0.02 Angstrom, in both structures, implying that the interaction with oxygen dominates the arrangement of Ni atoms at the surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A program is provided to determine structural parameters of atoms in or adsorbed on surfaces by refinement of atomistic models towards experimentally determined data generated by the normal incidence X-ray standing wave (NIXSW) technique. The method employs a combination of Differential Evolution Genetic Algorithms and Steepest Descent Line Minimisations to provide a fast, reliable and user friendly tool for experimentalists to interpret complex multidimensional NIXSW data sets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetics of the reactions of the atoms O(P-3), S(P-3), Se(P-3), and Te((3)p) with a series of alkenes are examined for correlations relating the logarithms of the rate coefficients to the energies of the highest occupied molecular orbitals (HOMOs) of the alkenes. These correlations may be employed to predict rate coefficients from the calculated HOMO energy of any other alkene of interest. The rate coefficients obtained from the correlations were used to formulate structure-activity relations (SARs) for reactions of O((3)p), S(P-3), Se (P-3), and Te((3)p) with alkenes. A comparison of the values predicted by both the correlations and the SARs with experimental data where they exist allowed us to assess the reliability of our method. We demonstrate the applicability of perturbation frontier molecular orbital theory to gas-phase reactions of these atoms with alkenes. The correlations are apparently not applicable to reactions of C(P-3), Si(P-3), N(S-4), and Al(P-2) atoms with alkenes, a conclusion that could be explained in terms of a different mechanism for reaction of these atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an application of cavity-enhanced absorption spectroscopy with an off-axis alignment of the cavity formed by two spherical mirrors and with time integration of the cavity-output intensity for detection of nitrogen dioxide (NO2) and iodine monoxide (IO) radicals using a violet laser diode at lambda = 404.278 nm. A noise-equivalent (1sigma = root-mean-square variation of the signal) fractional absorption for one optical pass of 4.5x10(-8) was demonstrated with a mirror reflectivity of similar to0.99925, a cavity length of 0.22 m and a lock-in-amplifier time constant of 3 s. Noise-equivalent detection sensitivities towards nitrogen dioxide of 1.8x10(10) molecule cm(-3) and towards the IO radical of 3.3x10(9) molecule cm(-3) were achieved in flow tubes with an inner diameter of 4 cm for a lock-in-amplifier time constant of 3 s. Alkyl peroxy radicals were detected using chemical titration with excess nitric oxide (RO2 + NO --> RO + NO2). Measurement of oxygen-atom concentrations was accomplished by determining the depletion of NO2 in the reaction NO2 + O --> NO + O-2. Noise-equivalent concentrations of alkyl peroxy radicals and oxygen atoms were 3x10(10) molecule cm(-3) in the discharge-flow-tube experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advantages of bimetallic nanoparticles as C - C coupling catalysts are discussed, and a simple, bottom- up synthesis method of core - shell Ni - Pd clusters is presented. This method combines electrochemical and 'wet chemical' techniques, and enables the preparation of highly monodispersed structured bimetallic nanoclusters. The double- anode electrochemical cell is described in detail. The core - shell Ni - Pd clusters were then applied as catalysts in the Hiyama cross- coupling reaction between phenyltrimethoxysilane and various haloaryls. Good product yields were obtained with a variety of iodo- and bromoaryls. We found that, for a fixed amount of Pd atoms, the core - shell clusters outperform both the monometallic Pd clusters and the alloy bimetallic Ni - Pd ones. THF is an excellent solvent for this process, with less than 2% homocoupling by-product. The roles of the stabiliser and the solvent are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DFT and TD-DFT calculations (ADF program) were performed in order to analyze the electronic structure of the [M-3(CO)(12)] clusters (M = Ru, Os) and interpret their electronic spectra. The highest occupied molecular orbitals are M-M bonding (sigma) involving different M-M bonds, both for Ru and Os. They participate in low-energy excitation processes and their depopulation should weaken M-M bonds in general. While the LUMO is M-NI and M-CO anti-bonding (sigma*), the next, higher-lying empty orbitals have a main contribution from CO (pi*) and either a small (Ru) or an almost negligible one (Os) from the metal atoms. The main difference between the two clusters comes from the different nature of these low-energy unoccupied orbitals that have a larger metal contribution in the case of ruthenium. The photochemical reactivity of the two clusters is reexamined and compared to earlier interpretations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

coating composition comprising an oxidatively drying coating binder and a chelate comprising at least one group according to the following formula (I): forming a complex with a metal ion, A1 and A2 both being an aromatic residue, R1 and R3 being covalently bonded groups, and R2 being a divalent organic radical, wherein at least one solubilizing group is coivalently bonded to the chelating compound. The solubilizing group is a non-polar group, preferable an aliphatic group having at least four carbon atoms, covalently bonded to A1 and/or A2. The metal ion is a divalent ion of a metal selected from the group of manganese, cobalt, copper, lead, zirconium, iron, lanthanium, cerium, vanadium, and clacium or a trivalent ion of a metal selected from the group of manganese, cobalt, lead, zirconium, iron, lanthanium, cerium, and vanadium, combined with a monovalent counterion.