118 resultados para Synthesis and characterization
Resumo:
The homologous series of side chain liquid crystal polymers, the poly[x-(4-methoxyazobenzene- 40-oxy)alkyl methacrylate]s, has been prepared in which the length of the flexible alkyl spacer has been varied from 3 to 11 methylene units. All the polymers exhibit liquid crystalline behaviour. The propyl and butyl members show exclusively nematic behaviour. The pentyl, hexyl, octyl and decyl members show a nematic and a smectic A phase while the heptyl, nonyl and undecyl homologues exhibit only a smectic A phase. The smectic A phase has been studied using X-ray diffraction and assigned as a smectic A1 phase in which the side chains are fully overlapped and the backbones are confined to lie between the smectic layers. For the nonyl member an incommensurate smectic phase is observed. The dependence of the transition temperatures on the length of the flexible spacer is understood in terms of the average shapes of the side chains.
Resumo:
Polyvinylpyrrolidone is a widely used in tablet formulations with the linear form acting as a wetting agent and disintegrant whereas the cross-linked form is a super-disintegrant. We have previously reported that simply mixing the commercial cross-linked polymer with ibuprofen disrupted drug crystallinity with consequent improvements in drug dissolution behavior. In this study, we have designed and synthesized novel cross-linking agents containing a range of oligoether moieties which have then be polymerized with vinylpyrrolidone to generate a suite of novel excipients with enhanced hydrogen-bonding capabilities. The polymers have a porous surface and swell in most common solvents and in water; properties which suggest their value as disintegrants. The polymers were evaluated in simple physical mixtures with ibuprofen as a model poorly-water soluble drug. The results show that the novel PVPs induce the drug to become “X-ray amorphous”, which increased dissolution to a greater extent than that seen with commercial cross-linked PVP. The polymers stabilize the amorphous drug with no evidence for recrystallization seen after 20 weeks storage.
Resumo:
The mammalian bradykinin-degrading enzyme aminopeptidase P (AP-P; E. C. 3.4.11.9) is a metal-dependent enzyme and is a member of the peptidase clan MG. AP-P exists as membrane-bound and cytosolic forms, which represent distinct gene products. A partially truncated clone encoding the cytosolic form was obtained from a human pancreatic cDNA library and the 5' region containing the initiating Met was obtained by 5' rapid accumulation of cDNA ends (RACE). The open reading frame encodes a protein of 623 amino acids with a calculated molecular mass of 69,886 Da. The full-length cDNA with a C-terminal hexahistidine tag was expressed in Escherichia coli and COS-1 cells and migrated on SDS-PAGE with a molecular mass of 71 kDa. The expressed cytosolic AP-P hydrolyzed the X-Pro bond of bradykinin and substance P but did not hydrolyze Gly-Pro-hydroxyPro. Hydrolysis of bradykinin was inhibited by 1,10-phenanthroline and by the specific inhibitor of the membrane-bound form of mammalian AP-P, apstatin. Inductively coupled plasma atomic emission spectroscopy of AP-P expressed in E. coli revealed the presence of 1 mol of manganese/mol of protein and insignificant amounts of cobalt, iron, and zinc. The enzymatic activity of AP-P was promoted in the presence of Mn(II), and this activation was increased further by the addition of glutathione. The only other metal ion to cause slight activation of the enzyme was Co(II), with Ca(II), Cu(II), Mg(II), Ni(II), and Zn(II) all being inhibitory. Removal of the metal ion from the protein was achieved by treatment with 1,10-phenanthroline. The metal-free enzyme was reactivated by the addition of Mn(II) and, partially, by Fe(II). Neither Co(II) nor Zn(II) reactivated the metal-free enzyme. On the basis of these data we propose that human cytosolic AP-P is a single metal ion-dependent enzyme and that manganese is most likely the metal ion used in vivo.
Resumo:
A penta-nuclear. star-shaped hetero-metallic compound containing a unique Ni4KO8 core has been synthesized. The X-ray single crystal structure analysis reveals that in the complex, [K(Ni(LH)(2))(4)(OH2)(8)](Br)(ClO4)(8)center dot 11H(2)O (LH=(CH3)(2)HN+(CH2)(3)N=CHC6H4O-) the eight coordinate central K+ ion is encapsulated by four terminal [Ni(LH)(2)](2+) units through the double water bridges between K+ and each Ni(II) ions.
Resumo:
The synthesis and crystal structures of three nonheme di-iron(III) complexes with a tridentate N,N,O Schiff-base ligand, 2-({[2-(dimethylamino) ethyl] imino} methyl) phenol (HL), are reported. Complexes [Fe2OL2(NCO)(2)] (1a) and [Fe2OL2(SAL)(2)]center dot H2O [SAL = o-(CHO)C6H4O-] (1b) are unsupported mu-oxido-bridged dimers, and [Fe-2(OH)L-2(HCOO)(2)-(Cl)] (2) is a mu-hydroxido-bridged dimer supported by a formato bridging ligand. All complexes have been characterized by X-ray crystallography and spectroscopic analysis. Complex 1b has been reported previously; however, it has been reinvestigated to confirm the presence of a crucial water molecule in the solid state. Structural analyses show that in 1a the iron atoms are pentacoordinate with a bent Fe-O-Fe angle [142.7(2)degrees], whereas in 2 the metal centers are hexacoordinate with a normal Fe-OH-Fe bridging angle [137.9(2)degrees]. The Fe-O-Fe angles in complexes 1a and 1b differ significantly to those usually shown by (mu-oxido) Fe-III complexes. A theoretical study has been performed in order to rationalize this deviation. Moreover, the influence of the water molecule observed in the solid-state structure of 1b on the Fe-O-Fe angle is also analyzed theoretically.
Resumo:
Cobalt(III) complexes of diacetyl monooxime benzoyl hydrazone (dmoBH(2)) and diacetyl monooxime isonicotinoyl hydrazone (dmoInH(2)) have been synthesized and characterized by elemental analyses and spectroscopic methods. The X-ray crystal structures of the two hydrazone ligands, as well as that of the cobalt(III) complex [Co(III)(dmoInH)(2)]Cl center dot 2H(2)O, are also reported. It is found that in the cobalt(III) complexes the Co(III) ion is hexa-coordinated, the hydrazone ligands behaving as mono-anionic tridentate O,N,N donors. In the [Co(III)(dmoInH) (2)]Cl center dot 2H(2)O complex, the amide and the oxime hydrogens are deprotonated for both the ligands, while the isonicotine nitrogens are protonated. In the [Co(III)(d-moBH)(2)] Cl complex, only the amide nitrogens are deprotonated. It is shown that the additional hydrogen bonding capability of the isonicotine nitrogen results in different conformation and supramolecular structure for dmoInH(2), compared to dmoBH(2), in the solid state. Comparing the structure of the [CoIII(dmoInH)(2)]Cl center dot 2H(2)O with that of the Zn(II) complex of the same ligand, reported earlier, it is seen that the metal ion has a profound influence on the supramolecular structure, due to change in geometrical dispositions of the chelate rings.
Resumo:
New Mo(II) complexes with 2,2'-dipyridylamine (L1), [Mo(CH(3)CN)(eta(3)-C(3)H(5))(CO)(2)(L1)]OTf (C1a) and [{MoBr(eta(3)-C(3)H(5))(CO)(2)(L1)}(2)(4,4'-bipy)](PF(6))(2) (C1b), with {[bis(2-pyridyl)amino]carbonyl}ferrocene (L2), [MoBr(eta(3)-C(3)H(5))(CO)(2)(L2)] (C2), and with the new ligand N,N-bis(ferrocenecarbonyl)-2-aminopyridine (L3), [MoBr(eta(3)-C(3)H(5))(CO)(2)(L3)] (C3), were prepared and characterized by FTIR and (1)H and (13)C NMR spectroscopy. C1a, C1b, L3, and C2 were also structurally characterized by single crystal X-ray diffraction. The Mo(II) coordination sphere in all complexes features the facial arrangement of allyl and carbonyl ligands, with the axial isomer present in C1a and C2, and the equatorial in the binuclear C1b. In both C1a and C1b complexes, the L1 ligand is bonded to Mo(II) through the nitrogen atoms and the NH group is involved in hydrogen bonds. The X-ray single crystal structure of C2 shows that L2 is coordinated in a kappa(2)-N,N-bidentate chelating fashion. Complex C3 was characterized as [MoBr(eta(3)-C(3)H(5))(CO)(2)(L3)] with L3 acting as a kappa(2)-N,O-bidentate ligand, based on the spectroscopic data, complemented by DFT calculations. The electrochemical behavior of the monoferrocenyl and diferrocenyl ligands L2 and L3 has been studied together with that of their Mo(II) complexes C2 and C3. As much as possible, the nature of the different redox changes has been confirmed by spectrophotometric measurements. The nature of the frontier orbitals, namely the localization of the HOMO in Mo for both in C2 and C3, was determined by DFT studies.
Resumo:
Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]·2H2O (1) of mono-condensed tridentate Schiff baseligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the NiII as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)2·4H2O furnishing the complex [NiL(NCS)] (2) and with CuCl2·2H2O in the presence of NaN3 or NH4SCN producing [CuL(N3)]2 (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)2·6H2O and Cu(NO3)2·3H2O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)2·6H2O or Ni(NO3)2·6H2O to yield [Ni(hap)2] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, NiII possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around CuII in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around CuII is square pyramidal. In both 5 and 6, the CuII atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks.
Resumo:
Development of an efficient tissue culture protocol in coconut is hampered by numerous technical constraints. Thus a greater understanding of the fundamental aspects of embryogenesis is essential. The role of AINTEGUMENTA-like genes in embryogenesis has been elucidated not only in model plants but also in economically important crops. A coconut gene, CnANT, that encodes two APETALA2 (AP2) domains and a conserved linker region similar to those of the BABY BOOM transcription factor was cloned, characterized, and its tissue specific expression was examined. The full-length cDNA of 1,780 bp contains a 1,425-bp open reading frame that encodes a putative peptide of 474 amino acids. The genomic DNA sequence includes 2,317 bp and consists of nine exons interrupted by eight introns. The exon/intron organization of CnANT is similar to that of homologous genes in other plant species. Analysis of differential tissue expression by real-time polymerase chain reaction indicated that CnANT is expressed more highly in in vitro grown tissues than in other vegetative tissues. Sequence comparison of the genomic sequence of CnANT in different coconut varieties revealed one single nucleotide polymorphism and one indel in the first exon and first intron, respectively, which differentiate the Tall group of trees from Dwarfs. The indel sequence, which can be considered a simple sequence repeats marker, was successfully used to distinguish the Tall and Dwarf groups as well as to develop a marker system, which may be of value in the identification of parental varieties that are used in coconut breeding programs in Sri Lanka.
Resumo:
Psoriasis is a common, chronic and relapsing inflammatory skin disease. It affects approximately 2% of the western population and has no cure. Combination therapy for psoriasis often proves more efficacious and better tolerated than monotherapy with a single drug. Combination therapy could be administered in the form of a co-drug, where two or more therapeutic compounds active against the same condition are linked by a cleavable covalent bond. Similar to the pro-drug approach, the liberation of parent moieties post-administration, by enzymatic and/or chemical mechanisms, is a pre-requisite for effective treatment. In this study, a series of co-drugs incorporating dithranol in combination with one of several non-steroidal anti-inflammatory drugs, both useful for the treatment of psoriasis, were designed, synthesized and evaluated. An ester co-drug comprising dithranol and naproxen in a 1:1 stoichiometric ratio was determined to possess the optimal physicochemical properties for topical delivery. The co-drug was fully hydrolyzed in vitro by porcine liver esterase within four hours. When incubated with homogenized porcine skin, 9.5% of the parent compounds were liberated after 24 h, suggesting in situ esterase-mediated cleavage of the co-drug would occur within the skin. The kinetics of the reaction revealed first order kinetics, Vmax = 10.3 μM/min and Km = 65.1 μM. The co-drug contains a modified dithranol chromophore that was just 37% of the absorbance of dithranol at 375 nm and suggests reduced skin/clothes staining. Overall, these findings suggest that the dithranol-naproxen co-drug offers an attractive, novel approach for the treatment of psoriasis.
Resumo:
We synthesize existing sedimentary charcoal records to reconstruct Holocene fire history at regional, continental and global scales. The reconstructions are compared with the two potential controls of burning at these broad scales – changes in climate and human activities – to assess their relative importance on trends in biomass burning. Here we consider several hypotheses that have been advanced to explain the Holocene record of fire, including climate, human activities and synergies between the two. Our results suggest that 1) episodes of high fire activity were relatively common in the early Holocene and were consistent with climate changes despite low global temperatures and low levels of biomass burning globally; 2) there is little evidence from the paleofire record to support the Early Anthropocene Hypothesis of human modification of the global carbon cycle; 3) there was a nearly-global increase in fire activity from 3 to 2 ka that is difficult to explain with either climate or humans, but the widespread and synchronous nature of the increase suggests at least a partial climate forcing; and 4) burning during the past century generally decreased but was spatially variable; it declined sharply in many areas, but there were also large increases (e.g., Australia and parts of Europe). Our analysis does not exclude an important role for human activities on global biomass burning during the Holocene, but instead provides evidence for a pervasive influence of climate across multiple spatial and temporal scales.
Resumo:
A series of aromatic ureas have been synthesised and found to exhibit strong gelation or even supergelation characteristics in organic solvents to afford colourless or translucent gel materials. The synthesis of these materials, assessment of their gelation characteristics and rheological properties are reported in this paper.