142 resultados para Summer schools
Resumo:
Although the curriculum subject of English is continually reviewed and revised in all English speaking countries, the status of literature is rarely questioned i.e. that it is of high cultural value and all students should be taught about it. The concerns of any review, in any country, are typically about what counts as literature, especially in terms of national heritage and then how much of the curriculum should it occupy. This article reports on three inter-related pieces of research that examine the views of in-service, and pre-service, English teachers about their experiences of teaching literature and their perceptions of its ‘status’ and significance at official level and in the actual classroom; it draws attention to how England compares to some other English speaking countries and draws attention to the need to learn from the negative outcomes of political policy in England. The findings suggest that the nature of engagement with literature for teachers and their students has been distorted by official rhetorics and assessment regimes and that English teachers are deeply concerned to reverse this pattern.
Resumo:
This paper reports the findings from two large scale national on-line surveys carried out in 2009 and 2010, which explored the state of history teaching in English secondary schools. Large variation in provision was identified within comprehensive schools in response to national policy decisions and initiatives. Using the data from the surveys and school level data that is publicly available, this study examines situated factors, particularly the nature of the school intake, the numbers of pupils with special educational needs and the socio-economic status of the area surrounding the school, and the impact these have on the provision of history education. The findings show that there is a growing divide between those students that have access to the ‘powerful knowledge’, provided by subjects like history, and those that do not.
Resumo:
This article reports on a two-year research project investigating attitudes to reading held by teachers and pupils in a sample of English primary schools. The project draws on international and national surveys of reading engagement and the findings of previous research, but seeks to provide more detailed data relating to the attitudes of individual children and the strategies used by individual schools and teachers whose pupils demonstrate positive attitudes to reading. Written questionnaires for teachers and pupils and oral interviews with teachers are used, generating both quantitative and qualitative data. Results are related to previous research literature in this area which shows a link between reading motivation and attainment, and to motivational theory. In conclusion, it is argued that teaching strategies which promote positive attitudes to reading need to be used alongside the teaching of reading skills in any effort to raise attainment.
Resumo:
Instrumental observations1, 2 and reconstructions3, 4 of global and hemispheric temperature evolution reveal a pronounced warming during the past 150 years. One expression of this warming is the observed increase in the occurrence of heatwaves5, 6. Conceptually this increase is understood as a shift of the statistical distribution towards warmer temperatures, while changes in the width of the distribution are often considered small7. Here we show that this framework fails to explain the record-breaking central European summer temperatures in 2003, although it is consistent with observations from previous years. We find that an event like that of summer 2003 is statistically extremely unlikely, even when the observed warming is taken into account. We propose that a regime with an increased variability of temperatures (in addition to increases in mean temperature) may be able to account for summer 2003. To test this proposal, we simulate possible future European climate with a regional climate model in a scenario with increased atmospheric greenhouse-gas concentrations, and find that temperature variability increases by up to 100%, with maximum changes in central and eastern Europe.
Resumo:
The vagaries of South Asian summer monsoon rainfall on short and long timescales impact the lives of more than one billion people. Understanding how the monsoon will change in the face of global warming is a challenge for climate science, not least because our state-of-the-art general circulation models still have difficulty simulating the regional distribution of monsoon rainfall. However, we are beginning to understand more about processes driving the monsoon, its seasonal cycle and modes of variability. This gives us the hope that we can build better models and ultimately reduce the uncertainty in our projections of future monsoon rainfall.
Resumo:
Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading months was performed by using one-, four-, and seven-month lead retrospective forecasts (hindcasts) of four coupled models from Ensembles-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) for the period of 1960-2005. It is found that the WNP summer anomalies, including lower-tropospheric circulation and precipitation anomalies, can be well predicted for all these leading months. The accuracy of the four-month lead prediction is only slightly weaker than that of the one-month lead prediction, although the skill decreases with the increase of leading months.
Resumo:
This study investigates the impacts of the transition of El Niño decaying phases on the western North Pacific anticyclone (WNPAC) anomalies in the subsequent summer with a coupled GCM. The modeling results suggest that the El Niños with short decaying phases lead to significant WNPAC anomalies in the following summer, which are contributed to mainly by the El Niños followed by La Niñas, in comparison with those not followed by La Niñas. In contrast, the long decaying cases are associated with the disappearance of WNPAC anomalies in the summer. These differences in the WNP circulation anomalies can be explained by the different configurations of simultaneous SSTs in the Indian Ocean and in the central and eastern tropical Pacific: positive SSTs in the former region and negative ones in the latter region constructively induce significant WNPAC anomalies for the short decaying cases, while the roles of positive SSTs in both regions for the long decaying cases work destructively and lead to weak WNP circulation anomalies. Further analysis indicates that the different lengths of El Niño decaying phases are predicted by the strength of Indian Ocean SSTs in the mature winter. The warmer wintertime Indian Ocean SSTs favor the anomalous easterly wind over the western and central equatorial Pacific in the subsequent summer, leading to a short decaying of El Niño. Thus, the strength of wintertime Indian Ocean SSTs is one of the important factors that affect the length of El Niño decaying phase and resultant WNPAC anomalies in the following summer.
Resumo:
The synoptic evolution of three tropical–extratropical (TE) interactions, each responsible for extreme rainfall events over southern Africa, is discussed in detail. Along with the consideration of previously studied events, common features of these heavy rainfall producing tropical temperate troughs (TTTs) over southern Africa are discussed. It is found that 2 days prior to an event, northeasterly moisture transports across Botswana, set up by the Angola low, are diverted farther south into the semiarid region of subtropical southern Africa. The TTTs reach full maturity as a TE cloud band, rooted in the central subcontinent, which is triggered by upper-level divergence along the leading edge of an upper-tropospheric westerly wave trough. Convection and rainfall within the cloud band is supported by poleward moisture transports with subtropical air rising as it leaves the continent and joins the midlatitude westerly flow. It is shown that these systems fit within a theoretical framework describing similar TE interactions found globally. Uplift forcing for the extreme rainfall of each event is investigated. Unsurprisingly, quasigeostrophic uplift is found to dominate in the midlatitudes with convective processes strongest in the subtropics. Rainfall in the semiarid interior of South Africa appears to be a result of quasigeostrophically triggered convection. Investigation of TTT formation in the context of planetary waves shows that early development is sometimes associated with previous anticyclonic wave breaking south of the subcontinent, with full maturity of TTTs occurring as a potential vorticity trough approaches the continent from the west. Sensitivity to upstream wave perturbations and effects on anticyclonic wave breaking in the South Indian Ocean are also observed.
Resumo:
Summer rainfall over China has experienced substantial variability on longer time scales during the last century, and the question remains whether this is due to natural, internal variability or is part of the emerging signal of anthropogenic climate change. Using the best available observations over China, the decadal variability and recent trends in summer rainfall are investigated with the emphasis on changes in the seasonal evolution and on the temporal characteristics of daily rainfall. The possible relationships with global warming are reassessed. Substantial decadal variability in summer rainfall has been confirmed during the period 1958–2008; this is not unique to this period but is also seen in the earlier decades of the twentieth century. Two dominant patterns of decadal variability have been identified that contribute substantially to the recent trend of southern flooding and northern drought. Natural decadal variability appears to dominate in general but in the cases of rainfall intensity and the frequency of rainfall days, particularly light rain days, then the dominant EOFs have a rather different character, being of one sign over most of China, and having principal components (PCs) that appear more trendlike. The increasing intensity of rainfall throughout China and the decrease in light rainfall days, particularly in the north, could at least partially be of anthropogenic origin, both global and regional, linked to increased greenhouse gases and increased aerosols.
Resumo:
Design summer years representing near-extreme hot summers have been used in the United Kingdom for the evaluation of thermal comfort and overheating risk. The years have been selected from measured weather data basically representative of an assumed stationary climate. Recent developments have made available ‘morphed’ equivalents of these years by shifting and stretching the measured variables using change factors produced by the UKCIP02 climate projections. The release of the latest, probabilistic, climate projections of UKCP09 together with the availability of a weather generator that can produce plausible daily or hourly sequences of weather variables has opened up the opportunity for generating new design summer years which can be used in risk-based decision-making. There are many possible methods for the production of design summer years from UKCP09 output: in this article, the original concept of the design summer year is largely retained, but a number of alternative methodologies for generating the years are explored. An alternative, more robust measure of warmth (weighted cooling degree hours) is also employed. It is demonstrated that the UKCP09 weather generator is capable of producing years for the baseline period, which are comparable with those in current use. Four methodologies for the generation of future years are described, and their output related to the future (deterministic) years that are currently available. It is concluded that, in general, years produced from the UKCP09 projections are warmer than those generated previously. Practical applications: The methodologies described in this article will facilitate designers who have access to the output of the UKCP09 weather generator (WG) to generate Design Summer Year hourly files tailored to their needs. The files produced will differ according to the methodology selected, in addition to location, emissions scenario and timeslice.
Resumo:
Postglacial expansion of deciduous oak woodlands of the Zagros—Anti-Taurus Mountains, a major biome of the Near East, was delayed until the middle Holocene at ~6300 cal. yr BP. The current hypotheses explain this delay as a consequence of a regional aridity during the early Holocene, slow migration rates of forest trees, and/or a long history of land use and agro-pastoralism in this region. In the present paper, support is given to a hypothesis that suggests different precipitation seasonalities during the early Holocene compared with the late Holocene. The oak species of the Zagros—Anti-Taurus Mts, particularly Quercus brantii Lindl., are strongly dependent on spring precipitation for regeneration and are sensitive to a long dry season. Detailed analysis of modern atmospheric circulation patterns in SW Asia during the late spring suggests that the Indian Summer Monsoon (ISM) intensification can modify the amount of late spring and/or early summer rainfall in western/northwestern Iran and eastern Anatolia, which could in turn have controlled the development of the Zagros—Anti-Taurus deciduous oak woodlands. During the early Holocene, the northwestward shift of the Inter-Tropical Convergence Zone (ITCZ) could have displaced the subtropical anticyclonic belt or associated high pressure ridges to the northwest. The latter could, in turn, have prevented the southeastward penetration of low pressure systems originating from the North Atlantic and Black Sea regions. Such atmospheric configuration could have reduced or eliminated the spring precipitation creating a typical Mediterranean continental climate characterized by winter-dominated precipitation. This scenario highlights the complexity of biome response to climate system interactions in transitional climatic and biogeographical regions.
Resumo:
Many climate models have problems simulating Indian summer monsoon rainfall and its variability, resulting in considerable uncertainty in future projections. Problems may relate to many factors, such as local effects of the formulation of physical parametrisation schemes, while common model biases that develop elsewhere within the climate system may also be important. Here we examine the extent and impact of cold sea surface temperature (SST) biases developing in the northern Arabian Sea in the CMIP5 multi-model ensemble, where such SST biases are shown to be common. Such biases have previously been shown to reduce monsoon rainfall in the Met Office Unified Model (MetUM) by weakening moisture fluxes incident upon India. The Arabian Sea SST biases in CMIP5 models consistently develop in winter, via strengthening of the winter monsoon circulation, and persist into spring and summer. A clear relationship exists between Arabian Sea cold SST bias and weak monsoon rainfall in CMIP5 models, similar to effects in the MetUM. Part of this effect may also relate to other factors, such as forcing of the early monsoon by spring-time excessive equatorial precipitation. Atmosphere-only future time-slice experiments show that Arabian Sea cold SST biases have potential to weaken future monsoon rainfall increases by limiting moisture flux acceleration through non-linearity of the Clausius-Clapeyron relationship. Analysis of CMIP5 model future scenario simulations suggests that, while such effects are likely small compared to other sources of uncertainty, models with large Arabian Sea cold SST biases suppress the range of potential outcomes for changes to future early monsoon rainfall.