113 resultados para Spatial Durbin model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With movement toward kilometer-scale ensembles, new techniques are needed for their characterization. A new methodology is presented for detailed spatial ensemble characterization using the fractions skill score (FSS). To evaluate spatial forecast differences, the average and standard deviation are taken of the FSS calculated over all ensemble member–member pairs at different scales and lead times. These methods were found to give important information about the ensemble behavior allowing the identification of useful spatial scales, spinup times for the model, and upscale growth of errors and forecast differences. The ensemble spread was found to be highly dependent on the spatial scales considered and the threshold applied to the field. High thresholds picked out localized and intense values that gave large temporal variability in ensemble spread: local processes and undersampling dominate for these thresholds. For lower thresholds the ensemble spread increases with time as differences between the ensemble members upscale. Two convective cases were investigated based on the Met Office United Model run at 2.2-km resolution. Different ensemble types were considered: ensembles produced using the Met Office Global and Regional Ensemble Prediction System (MOGREPS) and an ensemble produced using different model physics configurations. Comparison of the MOGREPS and multiphysics ensembles demonstrated the utility of spatial ensemble evaluation techniques for assessing the impact of different perturbation strategies and the need for assessing spread at different, believable, spatial scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is large diversity in simulated aerosol forcing among models that participated in the fifth Coupled Model Intercomparison Project (CMIP5), particularly related to aerosol interactions with clouds. Here we use the reported model data and fitted aerosol-cloud relations to separate the main sources of inter-model diversity in the magnitude of the cloud albedo effect. There is large diversity in the global load and spatial distribution of sulfate aerosol, as well as in global-mean cloud-top effective radius. The use of different parameterizations of aerosol-cloud interactions makes the largest contribution to diversity in modeled radiative forcing (up to -39%, +48% about the mean estimate). Uncertainty in pre-industrial sulfate load also makes a substantial contribution (-15%, +61% about the mean estimate), with smaller contributions from inter-model differences in the historical change in sulfate load and in mean cloud fraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Burst suppression in the electroencephalogram (EEG) is a well-described phenomenon that occurs during deep anesthesia, as well as in a variety of congenital and acquired brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of high amplitude EEG separated by low amplitude activity. However, its characterization as a “global brain state” has been challenged by recent results obtained with intracranial electrocortigraphy. Not only does it appear that burst suppression activity is highly asynchronous across cortex, but also that it may occur in isolated regions of circumscribed spatial extent. Here we outline a realistic neural field model for burst suppression by adding a slow process of synaptic resource depletion and recovery, which is able to reproduce qualitatively the empirically observed features during general anesthesia at the whole cortex level. Simulations reveal heterogeneous bursting over the model cortex and complex spatiotemporal dynamics during simulated anesthetic action, and provide forward predictions of neuroimaging signals for subsequent empirical comparisons and more detailed characterization. Because burst suppression corresponds to a dynamical end-point of brain activity, theoretically accounting for its spatiotemporal emergence will vitally contribute to efforts aimed at clarifying whether a common physiological trajectory is induced by the actions of general anesthetic agents. We have taken a first step in this direction by showing that a neural field model can qualitatively match recent experimental data that indicate spatial differentiation of burst suppression activity across cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate models are potentially useful tools for addressing human dispersals and demographic change. The Arabian Peninsula is becoming increasingly significant in the story of human dispersals out of Africa during the Late Pleistocene. Although characterised largely by arid environments today, emerging climate records indicate that the peninsula was wetter many times in the past, suggesting that the region may have been inhabited considerably more than hitherto thought. Explaining the origins and spatial distribution of increased rainfall is challenging because palaeoenvironmental research in the region is in an early developmental stage. We address environmental oscillations by assembling and analysing an ensemble of five global climate models (CCSM3, COSMOS, HadCM3, KCM, and NorESM). We focus on precipitation, as the variable is key for the development of lakes, rivers and savannas. The climate models generated here were compared with published palaeoenvironmental data such as palaeolakes, speleothems and alluvial fan records as a means of validation. All five models showed, to varying degrees, that the Arabia Peninsula was significantly wetter than today during the Last Interglacial (130 ka and 126/125 ka timeslices), and that the main source of increased rainfall was from the North African summer monsoon rather than the Indian Ocean monsoon or from Mediterranean climate patterns. Where available, 104 ka (MIS 5c), 56 ka (early MIS 3) and 21 ka (LGM) timeslices showed rainfall was present but not as extensive as during the Last Interglacial. The results favour the hypothesis that humans potentially moved out of Africa and into Arabia on multiple occasions during pluvial phases of the Late Pleistocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe Global Atmosphere 3.0 (GA3.0): a configuration of the Met Office Unified Model (MetUM) developed for use across climate research and weather prediction activities. GA3.0 has been formulated by converging the development paths of the Met Office's weather and climate global atmospheric model components such that wherever possible, atmospheric processes are modelled or parametrized seamlessly across spatial resolutions and timescales. This unified development process will provide the Met Office and its collaborators with regular releases of a configuration that has been evaluated, and can hence be applied, over a variety of modelling régimes. We also describe Global Land 3.0 (GL3.0): a configuration of the JULES community land surface model developed for use with GA3.0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial variability of liquid cloud water content and rainwater content is analysed from three different observational platforms: in situ measurements from research aircraft, land-based remote sensing techniques using radar and lidar, and spaceborne remote sensing from CloudSat. The variance is found to increase with spatial scale, but also depends strongly on the cloud or rain fraction regime, with overcast regions containing less variability than broken cloud fields. This variability is shown to lead to large biases, up to a factor of 4, in both the autoconversion and accretion rates estimated at a model grid scale of ≈40 km by a typical microphysical parametrization using in-cloud mean values. A parametrization for the subgrid variability of liquid cloud and rainwater content is developed, based on the observations, which varies with both the grid scale and cloud or rain fraction, and is applicable for all model grid scales. It is then shown that if this parametrization of the variability is analytically incorporated into the autoconversion and accretion rate calculations, the bias is significantly reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A basic data requirement of a river flood inundation model is a Digital Terrain Model (DTM) of the reach being studied. The scale at which modeling is required determines the accuracy required of the DTM. For modeling floods in urban areas, a high resolution DTM such as that produced by airborne LiDAR (Light Detection And Ranging) is most useful, and large parts of many developed countries have now been mapped using LiDAR. In remoter areas, it is possible to model flooding on a larger scale using a lower resolution DTM, and in the near future the DTM of choice is likely to be that derived from the TanDEM-X Digital Elevation Model (DEM). A variable-resolution global DTM obtained by combining existing high and low resolution data sets would be useful for modeling flood water dynamics globally, at high resolution wherever possible and at lower resolution over larger rivers in remote areas. A further important data resource used in flood modeling is the flood extent, commonly derived from Synthetic Aperture Radar (SAR) images. Flood extents become more useful if they are intersected with the DTM, when water level observations (WLOs) at the flood boundary can be estimated at various points along the river reach. To illustrate the utility of such a global DTM, two examples of recent research involving WLOs at opposite ends of the spatial scale are discussed. The first requires high resolution spatial data, and involves the assimilation of WLOs from a real sequence of high resolution SAR images into a flood model to update the model state with observations over time, and to estimate river discharge and model parameters, including river bathymetry and friction. The results indicate the feasibility of such an Earth Observation-based flood forecasting system. The second example is at a larger scale, and uses SAR-derived WLOs to improve the lower-resolution TanDEM-X DEM in the area covered by the flood extents. The resulting reduction in random height error is significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decision to close airspace in the event of a volcanic eruption is based on hazard maps of predicted ash extent. These are produced using output from volcanic ash transport and dispersion (VATD)models. In this paper an objectivemetric to evaluate the spatial accuracy of VATD simulations relative to satellite retrievals of volcanic ash is presented. The 5 metric is based on the fractions skill score (FSS). Thismeasure of skill provides more information than traditional point-bypoint metrics, such as success index and Pearson correlation coefficient, as it takes into the account spatial scale overwhich skill is being assessed. The FSS determines the scale overwhich a simulation has skill and can differentiate between a "near miss" and a forecast that is badly misplaced. The 10 idealised scenarios presented show that even simulations with considerable displacement errors have useful skill when evaluated over neighbourhood scales of 200–700km2. This method could be used to compare forecasts produced by different VATDs or using different model parameters, assess the impact of assimilating satellite retrieved ash data and evaluate VATD forecasts over a long time period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within-field variation in sugar beet yield and quality was investigated in three commercial sugar beet fields in the east of England to identify the main associated variables and to examine the possibility of predicting yield early in the season with a view to spatially variable management of sugar beet crops. Irregular grid sampling with some purposively-located nested samples was applied. It revealed the spatial variability in each sugar beet field efficiently. In geostatistical analyses, most variograms were isotropic with moderate to strong spatial dependency indicating a significant spatial variation in sugar beet yield and associated growth and environmental variables in all directions within each field. The Kriged maps showed spatial patterns of yield variability within each field and visual association with the maps of other variables. This was confirmed by redundancy analyses and Pearson correlation coefficients. The main variables associated with yield variability were soil type, organic matter, soil moisture, weed density and canopy temperature. Kriged maps of final yield variability were strongly related to that in crop canopy cover, LAI and intercepted solar radiation early in the growing season, and the yield maps of previous crops. Therefore, yield maps of previous crops together with early assessment of sugar beet growth may make an early prediction of within-field variability in sugar beet yield possible. The Broom’s Barn sugar beet model failed to account for the spatial variability in sugar yield, but the simulation was greatly improved when corrected for early canopy development cover and when the simulated yield was adjusted for weeds and plant population. Further research to optimize inputs to maximise sugar yield should target the irrigation and fertilizing of areas within fields with low canopy cover early in the season.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The regional climate modelling system PRECIS, was run at 25 km horizontal resolution for 150 years (1949-2099) using global driving data from a five member perturbed physics ensemble (based on the coupled global climate model HadCM3). Output from these simulations was used to investigate projected changes in tropical cyclones (TCs) over Vietnam and the South China Sea due to global warming (under SRES scenario A1B). Thirty year climatological mean periods were used to look at projected changes in future (2069-2098) TCs compared to a 1961-1990 baseline. Present day results were compared qualitatively with IBTrACS observations and found to be reasonably realistic. Future projections show a 20-44 % decrease in TC frequency, although the spatial patterns of change differ between the ensemble members, and an increase of 27-53 % in the amount of TC associated precipitation. No statistically significant changes in TC intensity were found, however, the occurrence of more intense TCs (defined as those with a maximum 10 m wind speed > 35 m/s) was found to increase by 3-9 %. Projected increases in TC associated precipitation are likely caused by increased evaporation and availability of atmospheric water vapour, due to increased sea surface and atmospheric temperature. The mechanisms behind the projected changes in TC frequency are difficult to link explicitly; changes are most likely due to the combination of increased static stability, increased vertical wind shear and decreased upward motion, which suggest a decrease in the tropical overturning circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medicanes or “Mediterranean hurricanes” represent a rare and physically unique type of Mediterranean mesoscale cyclone. There are similarities with tropical cyclones with regard to their development (based on the thermodynamical disequilibrium between the warm sea and the overlying troposphere) and their kinematic and thermodynamical properties (medicanes are intense vortices with a warm core and even a cloud-free eye). Although medicanes are smaller and their wind speeds are lower than in tropical cyclones, the severity of their winds can cause substantial damage to islands and coastal areas. Concern about how human-induced climate change will affect extreme events is increasing. This includes the future impacts on medicanes due to the warming of the Mediterranean waters and the projected changes in regional atmospheric circulation. However, most global climate models do not have high enough spatial resolution to adequately represent small features such as medicanes. In this study, a cyclone tracking algorithm is applied to high resolution global climate model data with a horizontal grid resolution of approximately 25 km over the Mediterranean region. After a validation of the climatology of general Mediterranean mesoscale cyclones, changes in medicanes are determined using climate model experiments with present and future forcing. The magnitude of the changes in the winds, frequency and location of medicanes is assessed. While no significant changes in the total number of Mediterranean mesoscale cyclones are found, medicanes tend to decrease in number but increase in intensity. The model simulation suggests that medicanes tend to form more frequently in the Gulf of Lion–Genoa and South of Sicily.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous versions of the Consortium for Small-scale Modelling (COSMO) numerical weather prediction model have used a constant sea-ice surface temperature, but observations show a high degree of variability on sub-daily timescales. To account for this, we have implemented a thermodynamic sea-ice module in COSMO and performed simulations at a resolution of 15 km and 5 km for the Laptev Sea area in April 2008. Temporal and spatial variability of surface and 2-m air temperature are verified by four automatic weather stations deployed along the edge of the western New Siberian polynya during the Transdrift XIII-2 expedition and by surface temperature charts derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. A remarkable agreement between the new model results and these observations demonstrates that the implemented sea-ice module can be applied for short-range simulations. Prescribing the polynya areas daily, our COSMO simulations provide a high-resolution and high-quality atmospheric data set for the Laptev Sea for the period 14-30 April 2008. Based on this data set, we derive a mean total sea-ice production rate of 0.53 km3/day for all Laptev Sea polynyas under the assumption that the polynyas are ice-free and a rate of 0.30 km3/day if a 10-cm-thin ice layer is assumed. Our results indicate that ice production in Laptev Sea polynyas has been overestimated in previous studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The polynyas of the Laptev Sea are regions of particular interest due to the strong formation of Arctic sea-ice. In order to simulate the polynya dynamics and to quantify ice production, we apply the Finite Element Sea-Ice Ocean Model FESOM. In previous simulations FESOM has been forced with daily atmospheric NCEP (National Centers for Environmental Prediction) 1. For the periods 1 April to 9 May 2008 and 1 January to 8 February 2009 we examine the impact of different forcing data: daily and 6-hourly NCEP reanalyses 1 (1.875° x 1.875°), 6-hourly NCEP reanalyses 2 (1.875° x 1.875°), 6-hourly analyses from the GME (Global Model of the German Weather Service) (0.5° x 0.5°) and high-resolution hourly COSMO (Consortium for Small-Scale Modeling) data (5 km x 5 km). In all FESOM simulations, except for those with 6-hourly and daily NCEP 1 data, the openings and closings of polynyas are simulated in principle agreement with satellite products. Over the fast-ice area the wind fields of all atmospheric data are similar and close to in situ measurements. Over the polynya areas, however, there are strong differences between the forcing data with respect to air temperature and turbulent heat flux. These differences have a strong impact on sea-ice production rates. Depending on the forcing fields polynya ice production ranges from 1.4 km3 to 7.8 km3 during 1 April to 9 May 2011 and from 25.7 km3 to 66.2 km3 during 1 January to 8 February 2009. Therefore, atmospheric forcing data with high spatial and temporal resolution which account for the presence of the polynyas are needed to reduce the uncertainty in quantifying ice production in polynyas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arctic sea ice cover is thinning and retreating, causing changes in surface roughness that in turn modify the momentum flux from the atmosphere through the ice into the ocean. New model simulations comprising variable sea ice drag coefficients for both the air and water interface demonstrate that the heterogeneity in sea ice surface roughness significantly impacts the spatial distribution and trends of ocean surface stress during the last decades. Simulations with constant sea ice drag coefficients as used in most climate models show an increase in annual mean ocean surface stress (0.003 N/m2 per decade, 4.6%) due to the reduction of ice thickness leading to a weakening of the ice and accelerated ice drift. In contrast, with variable drag coefficients our simulations show annual mean ocean surface stress is declining at a rate of -0.002 N/m2 per decade (3.1%) over the period 1980-2013 because of a significant reduction in surface roughness associated with an increasingly thinner and younger sea ice cover. The effectiveness of sea ice in transferring momentum does not only depend on its resistive strength against the wind forcing but is also set by its top and bottom surface roughness varying with ice types and ice conditions. This reveals the need to account for sea ice surface roughness variations in climate simulations in order to correctly represent the implications of sea ice loss under global warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models for which the likelihood function can be evaluated only up to a parameter-dependent unknown normalizing constant, such as Markov random field models, are used widely in computer science, statistical physics, spatial statistics, and network analysis. However, Bayesian analysis of these models using standard Monte Carlo methods is not possible due to the intractability of their likelihood functions. Several methods that permit exact, or close to exact, simulation from the posterior distribution have recently been developed. However, estimating the evidence and Bayes’ factors for these models remains challenging in general. This paper describes new random weight importance sampling and sequential Monte Carlo methods for estimating BFs that use simulation to circumvent the evaluation of the intractable likelihood, and compares them to existing methods. In some cases we observe an advantage in the use of biased weight estimates. An initial investigation into the theoretical and empirical properties of this class of methods is presented. Some support for the use of biased estimates is presented, but we advocate caution in the use of such estimates.