100 resultados para Spatial Data Infrastructures (SDI)
Resumo:
Weeds tend to aggregate in patches within fields and there is evidence that this is partly owing to variation in soil properties. Because the processes driving soil heterogeneity operate at different scales, the strength of the relationships between soil properties and weed density would also be expected to be scale-dependent. Quantifying these effects of scale on weed patch dynamics is essential to guide the design of discrete sampling protocols for mapping weed distribution. We have developed a general method that uses novel within-field nested sampling and residual maximum likelihood (REML) estimation to explore scale-dependent relationships between weeds and soil properties. We have validated the method using a case study of Alopecurus myosuroides in winter wheat. Using REML, we partitioned the variance and covariance into scale-specific components and estimated the correlations between the weed counts and soil properties at each scale. We used variograms to quantify the spatial structure in the data and to map variables by kriging. Our methodology successfully captured the effect of scale on a number of edaphic drivers of weed patchiness. The overall Pearson correlations between A. myosuroides and soil organic matter and clay content were weak and masked the stronger correlations at >50 m. Knowing how the variance was partitioned across the spatial scales we optimized the sampling design to focus sampling effort at those scales that contributed most to the total variance. The methods have the potential to guide patch spraying of weeds by identifying areas of the field that are vulnerable to weed establishment.
Resumo:
The polynyas of the Laptev Sea are regions of particular interest due to the strong formation of Arctic sea-ice. In order to simulate the polynya dynamics and to quantify ice production, we apply the Finite Element Sea-Ice Ocean Model FESOM. In previous simulations FESOM has been forced with daily atmospheric NCEP (National Centers for Environmental Prediction) 1. For the periods 1 April to 9 May 2008 and 1 January to 8 February 2009 we examine the impact of different forcing data: daily and 6-hourly NCEP reanalyses 1 (1.875° x 1.875°), 6-hourly NCEP reanalyses 2 (1.875° x 1.875°), 6-hourly analyses from the GME (Global Model of the German Weather Service) (0.5° x 0.5°) and high-resolution hourly COSMO (Consortium for Small-Scale Modeling) data (5 km x 5 km). In all FESOM simulations, except for those with 6-hourly and daily NCEP 1 data, the openings and closings of polynyas are simulated in principle agreement with satellite products. Over the fast-ice area the wind fields of all atmospheric data are similar and close to in situ measurements. Over the polynya areas, however, there are strong differences between the forcing data with respect to air temperature and turbulent heat flux. These differences have a strong impact on sea-ice production rates. Depending on the forcing fields polynya ice production ranges from 1.4 km3 to 7.8 km3 during 1 April to 9 May 2011 and from 25.7 km3 to 66.2 km3 during 1 January to 8 February 2009. Therefore, atmospheric forcing data with high spatial and temporal resolution which account for the presence of the polynyas are needed to reduce the uncertainty in quantifying ice production in polynyas.
Resumo:
A data insertion method, where a dispersion model is initialized from ash properties derived from a series of satellite observations, is used to model the 8 May 2010 Eyjafjallajökull volcanic ash cloud which extended from Iceland to northern Spain. We also briefly discuss the application of this method to the April 2010 phase of the Eyjafjallajökull eruption and the May 2011 Grímsvötn eruption. An advantage of this method is that very little knowledge about the eruption itself is required because some of the usual eruption source parameters are not used. The method may therefore be useful for remote volcanoes where good satellite observations of the erupted material are available, but little is known about the properties of the actual eruption. It does, however, have a number of limitations related to the quality and availability of the observations. We demonstrate that, using certain configurations, the data insertion method is able to capture the structure of a thin filament of ash extending over northern Spain that is not fully captured by other modeling methods. It also verifies well against the satellite observations according to the quantitative object-based quality metric, SAL—structure, amplitude, location, and the spatial coverage metric, Figure of Merit in Space.
Resumo:
A comprehensive atmospheric boundary layer (ABL) data set was collected in eight fi eld experiments (two during each season) over open water and sea ice in the Baltic Sea during 1998–2001 with the primary objective to validate the coupled atmospheric- ice-ocean-land surface model BALTIMOS (BALTEX Integrated Model System). Measurements were taken by aircraft, ships and surface stations and cover the mean and turbulent structure of the ABL including turbulent fl uxes, radiation fl uxes, and cloud conditions. Measurement examples of the spatial variability of the ABL over the ice edge zone and of the stable ABL over open water demonstrate the wide range of ABL conditions collected and the strength of the data set which can also be used to validate other regional models.
Resumo:
The increased availability of digital elevation models and satellite image data enable testing of morphometric relationships between sand dune variables (dune height, spacing and equivalent sand thickness), which were originally established using limited field survey data. These long-established geomorphological hypotheses can now be tested against very much larger samples than were possible when available data were limited to what could be collected by field surveys alone. This project uses ASTER Global Digital Elevation Model (GDEM) data to compare morphometric relationships between sand dune variables in the southwest Kalahari dunefield to those of the Namib Sand Sea, to test whether the relationships found in an active sand sea (Namib) also hold for the fixed dune system of the nearby southwest Kalahari. The data show significant morphometric differences between the simple linear dunes of the Namib sand sea and the southwest Kalahari; the latter do not show the expected positive relationship between dune height and spacing. The southwest Kalahari dunes show a similar range of dune spacings, but they are less tall, on average, than the Namib sand sea dunes. There is a clear spatial pattern to these morphometric data; the tallest and most closely spaced dunes are towards the southeast of the Kalahari dunefield; and this is where the highest values of equivalent sand thickness result. We consider the possible reasons for the observed differences and highlight the need for more studies comparing sand seas and dunefields from different environmental settings.
Resumo:
Accurate knowledge of species’ habitat associations is important for conservation planning and policy. Assessing habitat associations is a vital precursor to selecting appropriate indicator species for prioritising sites for conservation or assessing trends in habitat quality. However, much existing knowledge is based on qualitative expert opinion or local scale studies, and may not remain accurate across different spatial scales or geographic locations. Data from biological recording schemes have the potential to provide objective measures of habitat association, with the ability to account for spatial variation. We used data on 50 British butterfly species as a test case to investigate the correspondence of data-derived measures of habitat association with expert opinion, from two different butterfly recording schemes. One scheme collected large quantities of occurrence data (c. 3 million records) and the other, lower quantities of standardised monitoring data (c. 1400 sites). We used general linear mixed effects models to derive scores of association with broad-leaf woodland for both datasets and compared them with scores canvassed from experts. Scores derived from occurrence and abundance data both showed strongly positive correlations with expert opinion. However, only for occurrence data did these fell within the range of correlations between experts. Data-derived scores showed regional spatial variation in the strength of butterfly associations with broad-leaf woodland, with a significant latitudinal trend in 26% of species. Sub-sampling of the data suggested a mean sample size of 5000 occurrence records per species to gain an accurate estimation of habitat association, although habitat specialists are likely to be readily detected using several hundred records. Occurrence data from recording schemes can thus provide easily obtained, objective, quantitative measures of habitat association.
Resumo:
Lack of access to insurance exacerbates the impact of climate variability on smallholder famers in Africa. Unlike traditional insurance, which compensates proven agricultural losses, weather index insurance (WII) pays out in the event that a weather index is breached. In principle, WII could be provided to farmers throughout Africa. There are two data-related hurdles to this. First, most farmers do not live close enough to a rain gauge with sufficiently long record of observations. Second, mismatches between weather indices and yield may expose farmers to uncompensated losses, and insurers to unfair payouts – a phenomenon known as basis risk. In essence, basis risk results from complexities in the progression from meteorological drought (rainfall deficit) to agricultural drought (low soil moisture). In this study, we use a land-surface model to describe the transition from meteorological to agricultural drought. We demonstrate that spatial and temporal aggregation of rainfall results in a clearer link with soil moisture, and hence a reduction in basis risk. We then use an advanced statistical method to show how optimal aggregation of satellite-based rainfall estimates can reduce basis risk, enabling remotely sensed data to be utilized robustly for WII.
Resumo:
Spatial and temporal fluctuations in the concentration field from an ensemble of continuous point-source releases in a regular building array are analyzed from data generated by direct numerical simulations. The release is of a passive scalar under conditions of neutral stability. Results are related to the underlying flow structure by contrasting data for an imposed wind direction of 0 deg and 45 deg relative to the buildings. Furthermore, the effects of distance from the source and vicinity to the plume centreline on the spatial and temporal variability are documented. The general picture that emerges is that this particular geometry splits the flow domain into segments (e.g. “streets” and “intersections”) in each of which the air is, to a first approximation, well mixed. Notable exceptions to this general rule include regions close to the source, near the plume edge, and in unobstructed channels when the flow is aligned. In the oblique (45 deg) case the strongly three-dimensional nature of the flow enhances mixing of a scalar within the canopy leading to reduced temporal and spatial concentration fluctuations within the plume core. These fluctuations are in general larger for the parallel flow (0 deg) case, especially so in the long unobstructed channels. Due to the more complex flow structure in the canyon-type streets behind buildings, fluctuations are lower than in the open channels, though still substantially larger than for oblique flow. These results are relevant to the formulation of simple models for dispersion in urban areas and to the quantification of the uncertainties in their predictions.
Resumo:
This introduction to the Virtual Special Issue surveys the development of spatial housing economics from its roots in neo-classical theory, through more recent developments in social interactions modelling, and touching on the role of institutions, path dependence and economic history. The survey also points to some of the more promising future directions for the subject that are beginning to appear in the literature. The survey covers elements hedonic models, spatial econometrics, neighbourhood models, housing market areas, housing supply, models of segregation, migration, housing tenure, sub-national house price modelling including the so-called ripple effect, and agent-based models. Possible future directions are set in the context of a selection of recent papers that have appeared in Urban Studies. Nevertheless, there are still important gaps in the literature that merit further attention, arising at least partly from emerging policy problems. These include more research on housing and biodiversity, the relationship between housing and civil unrest, the effects of changing age distributions - notably housing for the elderly - and the impact of different international institutional structures. Methodologically, developments in Big Data provide an exciting framework for future work.
Resumo:
Improved understanding and prediction of the fundamental environmental controls on ecosystem service supply across the landscape will help to inform decisions made by policy makers and land-water managers. To evaluate this issue for a local catchment case study, we explored metrics and spatial patterns of service supply for water quality regulation, agriculture production, carbon storage, and biodiversity for the Macronutrient Conwy catchment. Methods included using ecosystem models such as LUCI and JULES, integration of national scale field survey datasets, earth observation products and plant trait databases, to produce finely resolved maps of species richness and primary production. Analyses were done with both 1x1 km gridded and subcatchment data. A common single gradient characterised catchment scale ecosystem services supply with agricultural production and carbon storage at opposing ends of the gradient as reported for a national-scale assessment. Species diversity was positively related to production due to the below national average productivity levels in the Conwy combined with the unimodal relationship between biodiversity and productivity at the national scale. In contrast to the national scale assessment, a strong reduction in water quality as production increased was observed in these low productive systems. Various soil variables were tested for their predictive power of ecosystem service supply. Soil carbon, nitrogen, their ratio and soil pH all had double the power of rainfall and altitude, each explaining around 45% of variation but soil pH is proposed as a potential metric for ecosystem service supply potential as it is a simple and practical metric which can be carried out in the field with crowd-sourcing technologies now available. The study emphasises the importance of considering multiple ecosystem services together due to the complexity of covariation at local and national scales, and the benefits of exploiting a wide range of metrics for each service to enhance data robustness.