162 resultados para Semantic Modeling
Resumo:
The note proposes an efficient nonlinear identification algorithm by combining a locally regularized orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximized model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious model with excellent generalization performance. The D-optimality design criterion further enhances the model efficiency and robustness. An added advantage is that the user only needs to specify a weighting for the D-optimality cost in the combined model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.
Resumo:
The paper introduces an efficient construction algorithm for obtaining sparse linear-in-the-weights regression models based on an approach of directly optimizing model generalization capability. This is achieved by utilizing the delete-1 cross validation concept and the associated leave-one-out test error also known as the predicted residual sums of squares (PRESS) statistic, without resorting to any other validation data set for model evaluation in the model construction process. Computational efficiency is ensured using an orthogonal forward regression, but the algorithm incrementally minimizes the PRESS statistic instead of the usual sum of the squared training errors. A local regularization method can naturally be incorporated into the model selection procedure to further enforce model sparsity. The proposed algorithm is fully automatic, and the user is not required to specify any criterion to terminate the model construction procedure. Comparisons with some of the existing state-of-art modeling methods are given, and several examples are included to demonstrate the ability of the proposed algorithm to effectively construct sparse models that generalize well.
Resumo:
The performance benefit when using grid systems comes from different strategies, among which partitioning the applications into parallel tasks is the most important. However, in most cases the enhancement coming from partitioning is smoothed by the effects of synchronization overheads, mainly due to the high variability in the execution times of the different tasks, which, in turn, is accentuated by the large heterogeneity of grid nodes. In this paper we design hierarchical, queuing network performance models able to accurately analyze grid architectures and applications. Thanks to the model results, we introduce a new allocation policy based on a combination between task partitioning and task replication. The models are used to study two real applications and to evaluate the performance benefits obtained with allocation policies based on task replication.
Resumo:
Search engines exploit the Web's hyperlink structure to help infer information content. The new phenomenon of personal Web logs, or 'blogs', encourage more extensive annotation of Web content. If their resulting link structures bias the Web crawling applications that search engines depend upon, there are implications for another form of annotation rapidly on the rise, the Semantic Web. We conducted a Web crawl of 160 000 pages in which the link structure of the Web is compared with that of several thousand blogs. Results show that the two link structures are significantly different. We analyse the differences and infer the likely effect upon the performance of existing and future Web agents. The Semantic Web offers new opportunities to navigate the Web, but Web agents should be designed to take advantage of the emerging link structures, or their effectiveness will diminish.
Resumo:
The Boltzmann equation in presence of boundary and initial conditions, which describes the general case of carrier transport in microelectronic devices is analysed in terms of Monte Carlo theory. The classical Ensemble Monte Carlo algorithm which has been devised by merely phenomenological considerations of the initial and boundary carrier contributions is now derived in a formal way. The approach allows to suggest a set of event-biasing algorithms for statistical enhancement as an alternative of the population control technique, which is virtually the only algorithm currently used in particle simulators. The scheme of the self-consistent coupling of Boltzmann and Poisson equation is considered for the case of weighted particles. It is shown that particles survive the successive iteration steps.
Resumo:
We introduce a classification-based approach to finding occluding texture boundaries. The classifier is composed of a set of weak learners, which operate on image intensity discriminative features that are defined on small patches and are fast to compute. A database that is designed to simulate digitized occluding contours of textured objects in natural images is used to train the weak learners. The trained classifier score is then used to obtain a probabilistic model for the presence of texture transitions, which can readily be used for line search texture boundary detection in the direction normal to an initial boundary estimate. This method is fast and therefore suitable for real-time and interactive applications. It works as a robust estimator, which requires a ribbon-like search region and can handle complex texture structures without requiring a large number of observations. We demonstrate results both in the context of interactive 2D delineation and of fast 3D tracking and compare its performance with other existing methods for line search boundary detection.
Resumo:
A novel framework referred to as collaterally confirmed labelling (CCL) is proposed, aiming at localising the visual semantics to regions of interest in images with textual keywords. Both the primary image and collateral textual modalities are exploited in a mutually co-referencing and complementary fashion. The collateral content and context-based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix of the visual keywords. A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. We introduce a novel high-level visual content descriptor that is devised for performing semantic-based image classification and retrieval. The proposed image feature vector model is fundamentally underpinned by the CCL framework. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval, respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicate that the proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we introduce a novel high-level visual content descriptor devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt for bridging the so called "semantic gap". The proposed image feature vector model is fundamentally underpinned by an automatic image labelling framework, called Collaterally Cued Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts accompanying the images with the state-of-the-art low-level visual feature extraction techniques for automatically assigning textual keywords to image regions. A subset of the Corel image collection was used for evaluating the proposed method. The experimental results indicate that our semantic-level visual content descriptors outperform both conventional visual and textual image feature models.
Resumo:
Strong vertical gradients at the top of the atmospheric boundary layer affect the propagation of electromagnetic waves and can produce radar ducts. A three-dimensional, time-dependent, nonhydrostatic numerical model was used to simulate the propagation environment in the atmosphere over the Persian Gulf when aircraft observations of ducting had been made. A division of the observations into high- and low-wind cases was used as a framework for the simulations. Three sets of simulations were conducted with initial conditions of varying degrees of idealization and were compared with the observations taken in the Ship Antisubmarine Warfare Readiness/Effectiveness Measuring (SHAREM-115) program. The best results occurred with the initialization based on a sounding taken over the coast modified by the inclusion of data on low-level atmospheric conditions over the Gulf waters. The development of moist, cool, stable marine internal boundary layers (MIBL) in air flowing from land over the waters of the Gulf was simulated. The MIBLs were capped by temperature inversions and associated lapses of humidity and refractivity. The low-wind MIBL was shallower and the gradients at its top were sharper than in the high-wind case, in agreement with the observations. Because it is also forced by land–sea contrasts, a sea-breeze circulation frequently occurs in association with the MIBL. The size, location, and internal structure of the sea-breeze circulation were realistically simulated. The gradients of temperature and humidity that bound the MIBL cause perturbations in the refractivity distribution that, in turn, lead to trapping layers and ducts. The existence, location, and surface character of the ducts were well captured. Horizontal variations in duct characteristics due to the sea-breeze circulation were also evident. The simulations successfully distinguished between high- and low-wind occasions, a notable feature of the SHAREM-115 observations. The modeled magnitudes of duct depth and strength, although leaving scope for improvement, were most encouraging.
Resumo:
We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.
Resumo:
In order to explore the impact of a degraded semantic system on the structure of language production, we analysed transcripts from autobiographical memory interviews to identify naturally-occurring speech errors by eight patients with semantic dementia (SD) and eight age-matched normal speakers. Relative to controls, patients were significantly more likely to (a) substitute and omit open class words, (b) substitute (but not omit) closed class words, (c) substitute incorrect complex morphological forms and (d) produce semantically and/or syntactically anomalous sentences. Phonological errors were scarce in both groups. The study confirms previous evidence of SD patients’ problems with open class content words which are replaced by higher frequency, less specific terms. It presents the first evidence that SD patients have problems with closed class items and make syntactic as well as semantic speech errors, although these grammatical abnormalities are mostly subtle rather than gross. The results can be explained by the semantic deficit which disrupts the representation of a pre-verbal message, lexical retrieval and the early stages of grammatical encoding.
Resumo:
To test the effectiveness of stochastic single-chain models in describing the dynamics of entangled polymers, we systematically compare one such model; the slip-spring model; to a multichain model solved using stochastic molecular dynamics(MD) simulations (the Kremer-Grest model). The comparison involves investigating if the single-chain model can adequately describe both a microscopic dynamical and a macroscopic rheological quantity for a range of chain lengths. Choosing a particular chain length in the slip-spring model, the parameter values that best reproduce the mean-square displacement of a group of monomers is determined by fitting toMDdata. Using the same set of parameters we then test if the predictions of the mean-square displacements for other chain lengths agree with the MD calculations. We followed this by a comparison of the time dependent stress relaxation moduli obtained from the two models for a range of chain lengths. After identifying a limitation of the original slip-spring model in describing the static structure of the polymer chain as seen in MD, we remedy this by introducing a pairwise repulsive potential between the monomers in the chains. Poor agreement of the mean-square monomer displacements at short times can be rectified by the use of generalized Langevin equations for the dynamics and resulted in significantly improved agreement.