159 resultados para Remote sensing image
Resumo:
ATSR-2 active fire data from 1996 to 2000, TRMM VIRS fire counts from 1998 to 2000 and burn scars derived from SPOT VEGETATION ( the Global Burnt Area 2000 product) were mapped for Peru and Bolivia to analyse the spatial distribution of burning and its intra- and inter-annual variability. The fire season in the region mainly occurs between May and October; though some variation was found between the six broad habitat types analysed: desert, grassland, savanna, dry forest, moist forest and yungas (the forested valleys on the eastern slope of the Andes). Increased levels of burning were generally recorded in ATSR-2 and TRMM VIRS fire data in response to the 1997/1998 El Nino, but in some areas the El Nino effect was masked by the more marked influences of socio-economic change on land use and land cover. There were differences between the three global datasets: ATSR-2 under-recorded fires in ecosystems with low net primary productivities. This was because fires are set during the day in this region and, when fuel loads are low, burn out before the ATSR-2 overpass in the region which is between 02.45 h and 03.30 h. TRMM VIRS was able to detect these fires because its overpasses cover the entire diurnal range on a monthly basis. The GBA2000 product has significant errors of commission (particularly areas of shadow in the well-dissected eastern Andes) and omission (in the agricultural zone around Santa Cruz, Bolivia and in north-west Peru). Particular attention was paid to biomass burning in high-altitude grasslands, where fire is an important pastoral management technique. Fires and burn scars from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) data for a range of years between 1987 and 2000 were mapped for areas around Parque Nacional Rio Abiseo (Peru) and Parque Nacional Carrasco (Bolivia). Burn scars mapped in the grasslands of these two areas indicate far more burning had taken place than either the fires or the burn scars derived from global datasets. Mean scar sizes are smaller and have a smaller range in size between years the in the study area in Peru (6.6-7.1 ha) than Bolivia (16.9-162.5 ha). Trends in biomass burning in the two highland areas can be explained in terms of the changing socio-economic environments and impacts of conservation. The mismatch between the spatial scale of biomass burning in the high-altitude grasslands and the sensors used to derive global fire products means that an entire component of the fire regime in the region studied is omitted, despite its importance in the farming systems on the Andes.
Resumo:
A simple formulation relating the L-band microwave brightness temperature detected by a passive microwave radiometer to the near surface soil moisture was developed using MICRO-SWEAT, a coupled microwave emission model and soil-vegetation-atmosphere-transfer (SVAT) scheme. This simple model provides an ideal tool with which to explore the impact of sub-pixel heterogeneity on the retrieval of soil moisture from microwave brightness temperatures. In the case of a bare soil pixel, the relationship between apparent emissivity and surface soil moisture is approximately linear, with the clay content of the soil influencing just the intercept of this relationship. It is shown that there are no errors in the retrieved soil moisture from a bare soil pixel that is heterogeneous in soil moisture and texture. However, in the case of a vegetated pixel, the slope of the relationship between apparent emissivity and surface soil moisture decreases with increasing vegetation. Therefore for a pixel that is heterogeneous in vegetation and soil moisture, errors can be introduced into the retrieved soil moisture. Generally, under moderate conditions, the retrieved soil moisture is within 3% of the actual soil moisture. Examples illustrating this discussion use data collected during the Southern Great Plains '97 Experiment (SGP97).
Resumo:
Synthetic aperture radar (SAR) data have proved useful in remote sensing studies of deserts, enabling different surfaces to be discriminated by differences in roughness properties. Roughness is characterized in SAR backscatter models using the standard deviation of surface heights (sigma), correlation length (L) and autocorrelation function (rho(xi)). Previous research has suggested that these parameters are of limited use for characterizing surface roughness, and are often unreliable due to the collection of too few roughness profiles, or under-sampling in terms of resolution or profile length (L-p). This paper reports on work aimed at establishing the effects of L-p and sampling resolution on SAR backscatter estimations and site discrimination. Results indicate significant relationships between the average roughness parameters and L-p, but large variability in roughness parameters prevents any clear understanding of these relationships. Integral equation model simulations demonstrate limited change with L-p and under-estimate backscatter relative to SAR observations. However, modelled and observed backscatter conform in pattern and magnitude for C-band systems but not for L-band data. Variation in surface roughness alone does not explain variability in site discrimination. Other factors (possibly sub-surface scattering) appear to play a significant role in controlling backscatter characteristics at lower frequencies.
Resumo:
Changes in the extent of glaciers and rates of glacier termini retreat in the eastern Terskey-Alatoo Range, the Tien Shan Mountains, Central Asia have been evaluated using the remote sensing techniques. Changes in the extent of 335 glaciers between the end of the Little Ice Age (LIA; mid-19th century), 1990 and 2003 have been estimated through the delineation of glacier outlines and the LIA moraine positions on the Landsat TM and ASTER imagery for 1990 and 2003 respectively. By 2003, the glacier surface area had decreased by 19% of the LIA value, which constitutes a 76 km(2) reduction in glacier surface area. Mapping of 109 glaciers using the 1965 1:25,000 maps revealed that glacier surface area decreased by 12.6% of the 1965 value between 1965 and 2003. Detailed mapping of 10 glaciers using historical maps and aerial photographs from the 1943-1977 period, has enabled glacier extent variations over the 20th century to be identified with a higher temporal resolution. Glacial retreat was slow in the early 20th century but increased considerably between 1943 and 1956 and then again after 1977. The post-1990 period has been marked by the most rapid glacier retreat since the end of the LIA. The observed changes in the extent of glaciers are in line with the observed climatic warming. The regional weather stations have revealed a strong climatic warming during the ablation season since the 1950s at a rate of 0.02-0.03 degrees Ca-1. At the higher elevations in the study area represented by the Tien Shan meteorological station, the summer warming was accompanied by negative anomalies in annual precipitation in the 1990s enhancing glacier retreat. However, trends in precipitation in the post-1997 period cannot be evaluated due to the change in observational practices at this station. Neither station in the study area exhibits significant long-term trends in precipitation. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
This paper applies multispectral remote sensing techniques to map the Fe-oxide content over the entire Namib sand sea. Spectrometric analysis is applied to field samples to identify the reflectance properties of the dune sands which enable remotely sensed Fe-oxide mapping. The results indicate that the pattern of dune colour in the Namib sand sea arises from the mixing of at least two distinct sources of sand; a red component of high Fe-oxide content (present as a coating on the sand grains) which derives from the inland regions, particularly from major embayments into the Southern African escarpment; and a yellow coastal component of low Fe-oxide content which is brought into the area by northward-moving aeolian transport processes. These major provenances are separated by a mixing zone between 20 kin and 90 kin from the coast throughout the entire length of the sand sea. Previous workers have also recognised a third, fluvial, provenance, but the methodology applied here is not able to map this source as a distinct spectral component. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Climate variability in the African Soudano-Sahel savanna zone has attracted much attention because of the persistence of anomalously low rainfall. Past efforts to monitor the climate of this region have focused on rainfall and vegetation conditions, while land surface temperature (LST) has received less attention. Remote sensing of LST is feasible and possible at global scale. Most remotely sensed estimates of LST are based on the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) that are limited in their ability to capture the full diurnal cycle. Although more frequent observations are available from past geostationary satellites, their spatial resolution is coarser than that of polar orbiting satellites. In this study, the improved capabilities of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on the METEOSAT Second Generation (MSG) instrument are used to remotely sense the LST in the African Soudano-Sahel savanna zone at a resolution of 3 km and 15 minutes. In support of the Radiative Atmospheric Divergence using the ARM Mobile Facility (AMF), GERB and AMMA Stations (RADAGAST) project, African Monsoon Multidisciplinary Analyses (AMMA) project and the Department of Energy's Atmospheric Radiation Measurement (ARM) program, the ARM Mobile Facility was deployed during 2006 in this climatically sensitive region, thereby providing a unique opportunity to evaluate remotely sensed algorithms for deriving LST.
Resumo:
The ground surface net solar radiation is the energy that drives physical and chemical processes at the ground surface. In this paper, multi-spectral data from the Landsat-5 TM, topographic data from a gridded digital elevation model, field measurements, and the atmosphere model LOWTRAN 7 are used to estimate surface net solar radiation over the FIFE site. Firstly an improved method is presented and used for calculating total surface incoming radiation. Then, surface albedo is integrated from surface reflectance factors derived from remotely sensed data from Landsat-5 TM. Finally, surface net solar radiation is calculated by subtracting surface upwelling radiation from the total surface incoming radiation.
Resumo:
Airborne laser altimetry has the potential to make frequent detailed observations that are important for many aspects of studying land surface processes. However, the uncertainties inherent in airborne laser altimetry data have rarely been well measured. Uncertainty is often specified as generally as 20cm in elevation, and 40cm planimetric. To better constrain these uncertainties, we present an analysis of several datasets acquired specifically to study the temporal consistency of laser altimetry data, and thus assess its operational value. The error budget has three main components, each with a time regime. For measurements acquired less than 50ms apart, elevations have a local standard deviation in height of 3.5cm, enabling the local measurement of surface roughness of the order of 5cm. Points acquired seconds apart acquire an additional random error due to Differential Geographic Positioning System (DGPS) fluctuation. Measurements made up to an hour apart show an elevation drift of 7cm over a half hour. Over months, this drift gives rise to a random elevation offset between swathes, with an average of 6.4cm. The RMS planimetric error in point location was derived as 37.4cm. We conclude by considering the consequences of these uncertainties on the principle application of laser altimetry in the UK, intertidal zone monitoring.