102 resultados para Pd(II)-amino complexes
Resumo:
The molecular structure of trans-[PtCl(CCPh)(PEt2Ph)2] has been determined by X-ray diffraction methods. The crystals are monoclinic, space group P21, with a= 12.359(3), b= 13.015(3), c= 9.031(2)Å, β= 101.65(2)°, and Z= 2. The structure has been solved by the heavy-atom method and refined by full-matrix least squares to R 0.046 for 1 877 diffractometric intensity data. The crystals contain discrete molecules in which the platinum coordination is square planar. The phenylethynyl group is non-linear, with a Pt–CC angle of 163(2)°. Selected bond lengths are Pt–Cl 2.407(5) and Pt–C 1.98(2)Å. The structural trans influences of CCPh, CHCH2, and CH2SiMe3 ligands in platinum(II) complexes are compared; there is only a small dependence on hybridization at the ligating carbon atom.
Resumo:
The molecular structure of trans-[PtCl(CHCH2)(PEt2Ph)2] has been determined by X-ray diffraction methods. The crystals are orthorhombic, space group Pbcn, with a= 10.686(2), b= 13.832(4), c= 16.129(4)Å, and Z= 4. The structure has been solved by the heavy-atom method and refined by full-matrix least squares to R 0.044 for 1 420 diffractometric intensity data. The crystals contain discrete molecules in which the platinum co-ordination is square planar. The Pt–Cl bond vector coincides with a crystallographic diad axis about which the atoms of the vinyl group are disordered. Selected bond lengths (Å) are Pt–Cl 2.398(4), Pt–P 2.295(3), and Pt–C 2.03(2). The Pt–CC angle is 127(2)°. From a survey of the available structural data it is concluded that there is little, if any, back donation from platinum to carbon in platinum–alkenyl linkages.
Resumo:
Trimethyltin compounds Me3SnR(R = CHCH2, CFCF2, or CCPh) are selective reagents for the synthesis of unsaturated hydrocarbyl derivatives such as trans-PtCl(R)(PPhEt2)2, by R/Cl exchange or oxidative addition (e.g., to Pt(PPh3)3); single crystal X-ray analyses of two such compounds (R = CHCH2 or CCPh) show that the trans-influence of R has only a low sensitivity to hybridisation at carbon, with sp3 > sp ⩾ sp2.
Resumo:
Several new coordinatively unsaturated iron(II) complexes of the types [Fe(EN-iPr)X2] (E = P, S, Se; X = Cl, Br) and [Fe(ON-iPr)2X]X containing bidentate EN ligands based on N-(2-pyridinyl)aminophosphines as well as oxo, thio, and seleno derivatives thereof were prepared and characterized by NMR spectroscopy and X-ray crystallography. Mössbauer spectroscopy and magnetization studies confirmed their high-spin nature with magnetic moments very close to 4.9 μB, reflecting the expected four unpaired d-electrons in all these compounds. Stable low-spin carbonyl complexes of the types [Fe(PN-iPr)2(CO)X]X (X = Cl, Br) and cis-CO,cis-Br-[Fe(PN-iPr)(CO)2X2] (X = Br) were obtained by reacting cis-Fe(CO)4X2 with the stronger PN donor ligands, but not with the weaker EN donor ligands (E = O, S, Se). Furthermore, the reactivity of [Fe(PN-iPr)X2] toward CO was investigated by IR spectroscopy. Whereas at room temperature no reaction took place, at −50 °C [Fe(PN-iPr)X2] added readily CO to form, depending on the nature of X, the mono- and dicarbonyl complexes [Fe(PN-iPr)(X)2(CO)] (X = Cl) and [Fe(PN-iPr)(CO)2X2] (X = Cl, Br), respectively. In the case of X = Br, two isomeric dicarbonyl complexes, namely, cis-CO,trans-Br-[Fe(PN-iPr)(CO)2Br2] (major species) and cis-CO,cis-Br-[Fe(PN-iPr)(CO)2Br2] (minor species), are formed. The addition of CO to [Fe(PN-iPr)X2] was investigated in detail by means of DFT/B3LYP calculations. This study strongly supports the experimental findings that at low temperature two isomeric low-spin dicarbonyl complexes are formed. For kinetic reasons cis,trans-[Fe(PN-iPr)(CO)2Br2] releases CO at elevated temperature, re-forming [Fe(PN-iPr)Br2], while the corresponding cis,cis isomer is stable under these conditions.
Resumo:
Four new trinuclear hetero-metallic nickel(II)-cadmium(II) complexes [(NiL)(2)Cd(NCS)(2)] (1A and 1B), [(NiL)(2)Cd(NCO)(2)] (2) and [(NiL)(2)Cd(N-3)(2)] (3) have been synthesized using [NiL] as a so-called "ligand complex" (where H2L = N,N'-bis(salicylidene)-1,3-propanediamine) and structurally characterized. Crystal structure analyses reveal that all four complexes contain a trinuclear moiety in which two square planar [NiL] units are bonded to a central cadmium(II) ion through double phenoxido bridges. The Cd(II) is in a six-coordinate distorted octahedral environment being bonded additionally to two mutually cis nitrogen atoms of terminal thiocyanate (in 1A and 1B), cyanate (in 2) and azide (in 3). Complexes 1A and 1B have the same molecular formula but crystallize in very different monoclinic unit cells and can be considered as polymorphs. On the other hand, the two isoelectronic complexes 2 and 3 are indeed isomorphous and crystallize only in one form. Their conformation is similar to that observed in 1A.
Resumo:
Three new zinc(II)-hexamethylenetetramine (hmt) complexes [Zn-2(4-nbz)(4)(mu(2)-hmt)(OH2)(hmt)] (1). [Zn-2(2-nbz)(4)(mu(2)-hmt)(2)](n) (2) and [Zn-3(3-nbz)(4)(mu(2)-hmt)(mu(2)-OH)(mu(3)-OH)](n) (3) with three isomeric nitrobenzoate, [4-nbz = 4-nitrobenzoate, 2-nbz = 2-nitrobenzoate and 3-nbz = 3-nitrobenzoate] have been synthesized and structurally characterized by X-ray crystallography. Their identities have also been established by elemental analysis: IR, NMR, UV-Vis and mass spectral studies. 1 is a dinuclear complex formed by bridging hmt with mu(2) coordinating mode. The geometry around the Zn centers in 1 is distorted tetrahedral. Paddle-wheel centrosymmetric Zn-2(2-nbz)(4) units of complex 2 are interconnected by mu(2)-hmt forming a one-dimensional chain with square-pyramidal geometries around the Zn centers. Compound 3 contains a mu(2)/mu(3)-hydroxido and mu(2)-hmt bridged 1D chain. In this complex, varied geometries around the Zn centers are observed viz, tetrahedral, square pyramidal and trigonal bipyramidal. Various weak forces, i.e. lone pair-pi, pi-pi and CH-pi interactions, play a key role in stabilizing the observed structures for complexes 1,2 and 3. This series of complexes demonstrates that although the nitro group does not coordinate to the metal center, its presence at the 2-, 3- or 4-position of the phenyl ring has a striking effect on the dimensionality as well as the structure of the resulted coordination polymers, probably due to the participation of the nitro group in 1.p.center dot center dot center dot pi and/or C-H center dot center dot center dot pi interactions.
Resumo:
Three double phenoxido-bridged dinuclear nickel(II) complexes, namely [Ni-2(L-1)(2)(NCS)(2)] (1), [Ni-2(L-2)(2)(NCS)(2)] (2), and [Ni-2(L-3)(2)(NCS)(2)] (3) have been synthesized using the reduced tridentate Schiff-base ligands 2-[1-(3-methylamino-propylamino)-ethyl]-phenol (HL1), 2-[1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL2), and 2-[1-(3-dimethylarnino-propylamino)-ethyl]-phenol (HL3), respectively. The coordination compounds have been characterized by X-ray structural analyses, magnetic-susceptibility measurements, and various spectroscopic methods. In all complexes, the nickel(II) ions are penta-coordinated in a square-pyramidal environment, which is severely distorted in the case of 1 (Addison parameter tau = 0.47) and 3 (tau = 0.29), while it is almost perfect for 2 (tau = 0.03). This arrangement leads to relatively strong antiferromagnetic interactions between the Ni(II) (S = 1) metal centers as mediated by double phenoxido bridges (with J values of -23.32 (1), -35.45 (2), and -34.02 (3) cm(3) K mol(-1), in the convention H = -2JS(1)S(2)). The catalytic activity of these Ni compounds has been investigated for the aerial oxidation of 3,5-di-tert-butylcatechol. Kinetic data analysis following Michaelis-Menten treatment reveals that the catecholase activity of the complexes is influenced by the flexibility of the ligand and also by the geometry around the metal ion. Electrospray ionization mass spectroscopy (ESI-MS) studies (in the positive mode) have been performed for all the coordination compounds in the presence of 3,5-DTBC to characterize potential complex-substrate intermediates. The mass-spectrometry data, corroborated by electron paramagnetic resonance (EPR) measurements, suggest that the metal centers are involved in the catecholase activity exhibited by the complexes.
Resumo:
The reaction of cis-[RuCl2(dmso)(4)] with [6-(2-pyridinyl)-5,6-dihydrobenzimidazo[1,2-c] quinazoline] (L) afforded in pure form a blue ruthenium(II) complex, [Ru(L-1)(2)] (1), where the original L changed to [2-(1H-benzoimidazol-2-yl)-phenyl]-pyridin-2-ylmethylene-amine (HL1). Treatment of RuCl3 center dot 3H(2)O with L in dry tetrahydrofuran in inert atmosphere led to a green ruthenium(II) complex, trans-[RuCl2(L-2)(2)] (2), where L was oxidized in situ to the neutral species 6-pyridin-yl-benzo[4,5]imidazo[1,2-c] quinazoline (L-2). Complex 2 was also obtained from the reaction of RuCl3 center dot 3H(2)O with L-2 in dry ethanol. Complexes 1 and 2 have been characterized by physico-chemical and spectroscopic tools, and 1 has been structurally characterized by single-crystal X-ray crystallography. The electrochemical behavior of the complexes shows the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of these complexes with calf thymus DNA by using absorption and emission spectral studies allowed determination of the binding constant K-b and the linear Stern-Volmer quenching constant K-SV
Resumo:
Facile in situ Cu(II) mediated transformation of p-tolylsulfonyldithiocarbimate in conjunction with polypyridyl or phosphine ligands into corresponding carbamate and thiocarbamate led to the formation of new copper complexes with varying nuclearities and geometries, via C-S bond activation of the ligand within identical reaction systems.
Resumo:
Two phenoxido bridged dinuclear Cu(II) complexes, [Cu-2(L-1)(2)(NCNCN)(2)] (1) and [Cu-2(L-2)(2)(NCNCN)(2)]center dot 2H(2)O (2) have been synthesized using the tridentate reduced Schiff-base ligands 2-[1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL1) and 2-[1-(3-methylamino-propylamino)-ethyl]-phenol (HL2), respectively. The complexes have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Both the complexes present a diphenoxido bridging Cu2O2 core. The geometries around metal atoms are intermediate between trigonal bipyramid and square pyramid with the Addison parameters (tau) = 0.57 and 0.49 for 1 and 2, respectively. Within the core the Cu-O-Cu angles are 99.15 degrees and 103.51 degrees and average Cu-O bond distances are 2.036 and 1.978 angstrom for compounds 1 and 2, respectively. These differences have marked effect on the magnetic properties of two compounds. Although both are antiferromagnetically coupled, the coupling constants (J = -184.3 and -478.4 cm (1) for 1 and 2, respectively) differ appreciably.
Resumo:
Two phenoxo bridged dinuclear Cu(II) complexes, [Cu2L2(NO2)(2)] (1) and [Cu2L2(NO3)(2)] (2) have been synthesized using the tridentate reduced Schiff-base ligand 2-[(2-dimethylamino-ethylamino)-methyl]-phenol (HL). The complexes have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. The structures of the two compounds are very similar having the same tridentate chelating ligand (L) and mono-dentate anionic ligand nitrite for 1 and nitrate for 2. In both complexes Cu(II) is penta-coordinated but the square pyramidal geometry of the copper ions is severely distorted (Addison parameter (tau) = 0.33) in 1 while the distortion is quite small (average tau = 0.11) in 2. These differences have marked effect on the magnetic properties of two compounds. Although both are antiferromagnetically coupled, the coupling constants (J = -140.8 and -614.7 cm (1) for 1 and 2, respectively) show that the coupling is much stronger in 2.
Resumo:
Reaction of 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) with Cu(ClO(4))(2)center dot 6H(2)O in methanol in 3:1 M ratio at room temperature yields light green [CuL(3)](ClO(4))(2)center dot H(2)O (1). The X-ray crystal structure of the hemi acetonitrile solvate [CuL(3)](ClO(4))(2)center dot 0.5CH(3)CN has been determined which shows Jahn-Teller distortion in the CuN(6) core present in the cation [CuL(3)](2+). Complex 1 gives an axial EPR spectrum in acetonitrile-toluene glass with g(parallel to) = 2.262 (A(parallel to) = 169 x 10 (4) cm (1)) and g(perpendicular to) = 2.069. The Cu(II/I) potential in 1 in CH(2)Cl(2) at a glassy carbon electrode is 0.32 V versus NHE. This potential does not change with the addition of extra L in the medium implicating generation of a six-coordinate copper(I) species [CuL(3)](+) in solution. B3LYP/LanL2DZ calculations show that the six Cu-N bond distances in [CuL(3)](+) are 2.33, 2.25, 2.32, 2.25, 2.28 and 2.25 angstrom while the ideal Cu(I)-N bond length in a symmetric Cu(I)N(6) moiety is estimated as 2.25 angstrom. Reaction of L with Cu(CH(3)CN)(4)ClO(4) in dehydrated methanol at room temperature even in 4:1 M proportion yields [CuL(2)]ClO(4) (2). Its (1)H NMR spectrum indicates that the metal in [CuL(2)](+) is tetrahedral. The Cu(II/I) potential in 2 is found to be 0.68 V versus NHE in CH(2)Cl(2) at a glassy carbon electrode. In presence of excess L, 2 yields the cyclic voltammogram of 1. From (1)H NMR titration, the free energy of binding of L to [CuL(2)](+) to produce [CuL(3)](+) in CD(2)Cl(2) at 298 K is estimated as -11.7 (+/-0.2) kJ mol (1).