97 resultados para PARENTERAL LIPID EMULSIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between tryptophan-rich puroindoline proteins and model bacterial membranes at the air-liquid interface has been investigated by FTIR spectroscopy, surface pressure measurements and Brewster angle microscopy. The role of different lipid constituents on the interactions between lipid membrane and protein was studied using wild type (Pin-b) and mutant (Trp44 to Arg44 mutant, Pin-bs) puroindoline proteins. The results show differences in the lipid selectivity of the two proteins in terms of preferential binding to specific lipid head groups in mixed lipid systems. Pin-b wild type was able to penetrate mixed layers of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) head groups more deeply compared to the mutant Pin-bs. Increasing saturation of the lipid tails increased penetration and adsorption of Pin-b wild type, but again the response of the mutant form differed. The results provide insight as to the role of membrane architecture, lipid composition and fluidity, on antimicrobial activity of proteins. Data show distinct differences in the lipid binding behavior of Pin-b as a result of a single residue mutation, highlighting the importance of hydrophobic and charged amino acids in antimicrobial protein and peptide activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flour-rich waste (FRW) and by-product streams generated by bakery, confectionery and wheat milling plants could be employed as the sole raw materials for generic fermentation media production, suitable for microbial oil synthesis. Wheat milling by-products were used in solid state fermentations (SSF) of Aspergillus awamori for the production of crude enzymes, mainly glucoamylase and protease. Enzyme-rich SSF solids were subsequently employed for hydrolysis of FRW streams into nutrient-rich fermentation media. Batch hydrolytic experiments using FRW concentrations up to 205 g/L resulted in higher than 90%(w/w) starch to glucose conversion yields and 40% (w/w) total Kjeldahl nitrogen to free amino nitro-gen conversion yields. Starch to glucose conversion yields of 98.2, 86.1 and 73.4% (w/w) were achieved when initial FRW concentrations of 235, 300 and 350 g/L were employed in fed-batch hydrolytic experiments, respectively. Crude hydrolysates were used as fermentation media in shake flask cultures with the oleaginous yeast Lipomyces starkeyi DSM 70296 reaching a total dry weight of 30.5 g/L with a microbial oil content of 40.4% (w/w), higher than that achieved in synthetic media. Fed-batch bioreactor cultures led to a total dry weight of 109.8 g/L with a microbial oil content of 57.8% (w/w) and productivity of 0.4 g/L/h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To study the biotechnological production of lipids containing rich amounts of the medically and nutritionally important c-linolenic acid (GLA), during cultivation of the Zygomycetes Thamnidium elegans, on mixtures of glucose and xylose, abundant sugars of lignocellulosic biomass. Methods and Results: Glucose and xylose were utilized as carbon sources, solely or in mixtures, under nitrogen-limited conditions, in batch-flask or bioreactor cultures. On glucose, T. elegans produced 31.9 g/L of biomass containing 15.0 g/L lipid with significantly high GLA content (1014 mg/L). Xylose was proved to be an adequate substrate for growth and lipid production. Additionally, xylitol secretion occurred when xylose was utilized as carbon source, solely or in mixtures with glucose. Batch-bioreactor trials on glucose yielded satisfactory lipid production, with rapid substrate consumption rates. Analysis of intracellular lipids showed that the highest GLA content was observed in early stationary growth phase, while the phospholipid fraction was the most unsaturated fraction of T. elegans. Conclusions: Thamnidium elegans represents a promising fungus for the successful valorization of sugar-based lignocellulosic residues into microbial lipids of high nutritional and pharmaceutical interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present report and for the first time in the international literature, the impact of the addition of NaCl upon growth and lipid production on the oleaginous yeast Rhodosporidium toruloides was studied. Moreover, equally for first time, lipid production by R. toruloides was performed under non-aseptic conditions. Therefore, the potentiality of R. toruloides DSM 4444 to produce lipid in media containing several initial concentrations of NaCl with glucose employed as carbon source was studied. Preliminary batch-flask trials with increasing amounts of NaCl revealed the tolerance of the strain against NaCl content up to 6.0% (w/v). However, 4.0% (w/v) of NaCl stimulated lipid accumulation for this strain, by enhancing lipid production up to 71.3% (w/w) per dry cell weight. The same amount of NaCl was employed in pasteurized batch-flask cultures in order to investigate the role of the salt as bacterial inhibiting agent. The combination of NaCl and high glucose concentrations was found to satisfactorily suppress bacterial contamination of R. toruloides cultures under these conditions. Batch-bioreactor trials of the yeast in the same media with high glucose content (up to 150 g/L) resulted in satisfactory substrate assimilation, with almost linear kinetic profile for lipid production, regardless of the initial glucose concentration imposed. Finally, fed-batch bioreactor cultures led to the production of 37.2 g/L of biomass, accompanied by 64.5% (w/w) of lipid yield. Lipid yield per unit of glucose consumed received the very satisfactory value of 0.21 g/g, a value amongst the highest ones in the literature. The yeast lipid produced contained mainly oleic acid and to lesser extent palmitic and stearic acids, thus constituting a perfect starting material for “second generation” biodiesel