139 resultados para Orthogonal Resolution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High spatial resolution vertical profiles of pore-water chemistry have been obtained for a peatland using diffusive equilibrium in thin films (DET) gel probes. Comparison of DET pore-water data with more traditional depth-specific sampling shows good agreement and the DET profiling method is less invasive and less likely to induce mixing of pore-waters. Chloride mass balances as water tables fell in the early summer indicate that evaporative concentration dominates and there is negligible lateral flow in the peat. Lack of lateral flow allows element budgets for the same site at different times to be compared. The high spatial resolution of sampling also enables gradients to be observed that permit calculations of vertical fluxes. Sulfate concentrations fall at two sites with net rates of 1.5 and 5.0nmol cm− 3 day− 1, likely due to a dominance of bacterial sulfate reduction, while a third site showed a net gain in sulfate due to oxidation of sulfur over the study period at an average rate of 3.4nmol cm− 3 day− 1. Behaviour of iron is closely coupled to that of sulfur; there is net removal of iron at the two sites where sulfate reduction dominates and addition of iron where oxidation dominates. The profiles demonstrate that, in addition to strong vertical redox related chemical changes, there is significant spatial heterogeneity. Whilst overall there is evidence for net reduction of sulfate within the peatland pore-waters, this can be reversed, at least temporarily, during periods of drought when sulfide oxidation with resulting acid production predominates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atmospheric component of the United Kingdom’s new High-resolution Global Environmental Model (HiGEM) has been run with interactive aerosol schemes that include biomass burning and mineral dust. Dust emission, transport, and deposition are parameterized within the model using six particle size divisions, which are treated independently. The biomass is modeled in three nonindependent modes, and emissions are prescribed from an external dataset. The model is shown to produce realistic horizontal and vertical distributions of these aerosols for each season when compared with available satellite- and ground-based observations and with other models. Combined aerosol optical depths off the coast of North Africa exceed 0.5 both in boreal winter, when biomass is the main contributor, and also in summer, when the dust dominates. The model is capable of resolving smaller-scale features, such as dust storms emanating from the Bode´ le´ and Saharan regions of North Africa and the wintertime Bode´ le´ low-level jet. This is illustrated by February and July case studies, in which the diurnal cycles of model variables in relation to dust emission and transport are examined. The top-of-atmosphere annual mean radiative forcing of the dust is calculated and found to be globally quite small but locally very large, exceeding 20 W m22 over the Sahara, where inclusion of dust aerosol is shown to improve the model radiative balance. This work extends previous aerosol studies by combining complexity with increased global resolution and represents a step toward the next generation of models to investigate aerosol–climate interactions. 1. Introduction Accurate modeling of mineral dust is known to be important because of its radiative impact in both numerical weather prediction models (Milton et al. 2008; Haywood et

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the spectral design and manufacture of the narrow bandpass filters and 6-18µm broadband antireflection coatings for the 21-channel NASA EOS-AURA High Resolution Dynamics Limb Sounder (HIRDLS). A method of combining the measured spectral characteristics of each filter and antireflection coating, together with the spectral response of the other optical elements in the instrument to obtain a predicted system throughput response is presented. The design methods used to define the filter and coating spectral requirements, choice of filter materials, multilayer designs and deposition techniques are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized or tunable-kernel model is proposed for probability density function estimation based on an orthogonal forward regression procedure. Each stage of the density estimation process determines a tunable kernel, namely, its center vector and diagonal covariance matrix, by minimizing a leave-one-out test criterion. The kernel mixing weights of the constructed sparse density estimate are finally updated using the multiplicative nonnegative quadratic programming algorithm to ensure the nonnegative and unity constraints, and this weight-updating process additionally has the desired ability to further reduce the model size. The proposed tunable-kernel model has advantages, in terms of model generalization capability and model sparsity, over the standard fixed-kernel model that restricts kernel centers to the training data points and employs a single common kernel variance for every kernel. On the other hand, it does not optimize all the model parameters together and thus avoids the problems of high-dimensional ill-conditioned nonlinear optimization associated with the conventional finite mixture model. Several examples are included to demonstrate the ability of the proposed novel tunable-kernel model to effectively construct a very compact density estimate accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a particle swarm optimisation (PSO) aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assimilation of Doppler radar radial winds for high resolution NWP may improve short term forecasts of convective weather. Using insects as the radar target, it is possible to provide wind observations during convective development. This study aims to explore the potential of these new observations, with three case studies. Radial winds from insects detected by 4 operational weather radars were assimilated using 3D-Var into a 1.5 km resolution version of the Met Office Unified Model, using a southern UK domain and no convective parameterization. The effect on the analysis wind was small, with changes in direction and speed up to 45° and 2 m s−1 respectively. The forecast precipitation was perturbed in space and time but not substantially modified. Radial wind observations from insects show the potential to provide small corrections to the location and timing of showers but not to completely relocate convergence lines. Overall, quantitative analysis indicated the observation impact in the three case studies was small and neutral. However, the small sample size and possible ground clutter contamination issues preclude unequivocal impact estimation. The study shows the potential positive impact of insect winds; future operational systems using dual polarization radars which are better able to discriminate between insects and clutter returns should provided a much greater impact on forecasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spectral performance model, designed to simulate the system spectral throughput for each of the 21 channels in the HIRDLS radiometer, is described. This model uses the measured spectral characteristics of each of the components in the optical train, appropriately corrected for their optical environment, to determine the end-to-end spectral throughput profile for each channel. This profile is then combined with the predicted thermal emission from the atmosphere, arising from the height of interest, to establish an in-band (wanted) to out-of-band (unwanted) radiance ratio. The results from the use of the model demonstrate that the instrument level radiometric requirements for the instrument will be achieved. The optical arrangement and spectral design requirements for filtering in the HIRDLS instrument are described together with a presentation of the performance achieved for the complete set of manufactured filters. Compliance of the predicted passband throughput model to the spectral positioning requi rements of the instrument is also demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usefulness of any simulation of atmospheric tracers using low-resolution winds relies on both the dominance of large spatial scales in the strain and time dependence that results in a cascade in tracer scales. Here, a quantitative study on the accuracy of such tracer studies is made using the contour advection technique. It is shown that, although contour stretching rates are very insensitive to the spatial truncation of the wind field, the displacement errors in filament position are sensitive. A knowledge of displacement characteristics is essential if Lagrangian simulations are to be used for the inference of airmass origin. A quantitative lower estimate is obtained for the tracer scale factor (TSF): the ratio of the smallest resolved scale in the advecting wind field to the smallest “trustworthy” scale in the tracer field. For a baroclinic wave life cycle the TSF = 6.1 ± 0.3 while for the Northern Hemisphere wintertime lower stratosphere the TSF = 5.5 ± 0.5, when using the most stringent definition of the trustworthy scale. The similarity in the TSF for the two flows is striking and an explanation is discussed in terms of the activity of potential vorticity (PV) filaments. Uncertainty in contour initialization is investigated for the stratospheric case. The effect of smoothing initial contours is to introduce a spinup time, after which wind field truncation errors take over from initialization errors (2–3 days). It is also shown that false detail from the proliferation of finescale filaments limits the useful lifetime of such contour advection simulations to 3σ−1 days, where σ is the filament thinning rate, unless filaments narrower than the trustworthy scale are removed by contour surgery. In addition, PV analysis error and diabatic effects are so strong that only PV filaments wider than 50 km are at all believable, even for very high-resolution winds. The minimum wind field resolution required to accurately simulate filaments down to the erosion scale in the stratosphere (given an initial contour) is estimated and the implications for the modeling of atmospheric chemistry are briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a case study of a comparison of an Eulerian chemical transport model (CTM) and Lagrangian chemical model with measurements taken by aircraft. High-resolution Eulerian integrations produce improved point-by-point comparisons between model results and measurements compared to low resolution. The Lagrangian model requires mixing to be introduced in order to model the measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution satellite radar observations of erupting volcanoes can yield valuable information on rapidly changing deposits and geomorphology. Using the TerraSAR-X (TSX) radar with a spatial resolution of about 2 m and a repeat interval of 11-days, we show how a variety of techniques were used to record some of the eruptive history of the Soufriere Hills Volcano, Montserrat between July 2008 and February 2010. After a 15-month pause in lava dome growth, a vulcanian explosion occurred on 28 July 2008 whose vent was hidden by dense cloud. We were able to show the civil authorities using TSX change difference images that this explosion had not disrupted the dome sufficient to warrant continued evacuation. Change difference images also proved to be valuable in mapping new pyroclastic flow deposits: the valley-occupying block-and-ash component tending to increase backscatter and the marginal surge deposits reducing it, with the pattern reversing after the event. By comparing east- and west-looking images acquired 12 hours apart, the deposition of some individual pyroclastic flows can be inferred from change differences. Some of the narrow upper sections of valleys draining the volcano received many tens of metres of rockfall and pyroclastic flow deposits over periods of a few weeks. By measuring the changing shadows cast by these valleys in TSX images the changing depth of infill by deposits could be estimated. In addition to using the amplitude data from the radar images we also used their phase information within the InSAR technique to calculate the topography during a period of no surface activity. This enabled areas of transient topography, crucial for directing future flows, to be captured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new HadKPP atmosphere–ocean coupled model is described and then used to determine the effects of sub-daily air–sea coupling and fine near-surface ocean vertical resolution on the representation of the Northern Hemisphere summer intra-seasonal oscillation. HadKPP comprises the Hadley Centre atmospheric model coupled to the K Profile Parameterization ocean-boundary-layer model. Four 30-member ensembles were performed that varied in oceanic vertical resolution between 1 m and 10 m and in coupling frequency between 3 h and 24 h. The 10 m, 24 h ensemble exhibited roughly 60% of the observed 30–50 day variability in sea-surface temperatures and rainfall and very weak northward propagation. Enhancing either only the vertical resolution or only the coupling frequency produced modest improvements in variability and only a standing intra-seasonal oscillation. Only the 1 m, 3 h configuration generated organized, northward-propagating convection similar to observations. Sub-daily surface forcing produced stronger upper-ocean temperature anomalies in quadrature with anomalous convection, which likely affected lower-atmospheric stability ahead of the convection, causing propagation. Well-resolved air–sea coupling did not improve the eastward propagation of the boreal summer intra-seasonal oscillation in this model. Upper-ocean vertical mixing and diurnal variability in coupled models must be improved to accurately resolve and simulate tropical sub-seasonal variability. In HadKPP, the mere presence of air–sea coupling was not sufficient to generate an intra-seasonal oscillation resembling observations.