140 resultados para Multiple state models
Resumo:
Current methods for estimating vegetation parameters are generally sub-optimal in the way they exploit information and do not generally consider uncertainties. We look forward to a future where operational dataassimilation schemes improve estimates by tracking land surface processes and exploiting multiple types of observations. Dataassimilation schemes seek to combine observations and models in a statistically optimal way taking into account uncertainty in both, but have not yet been much exploited in this area. The EO-LDAS scheme and prototype, developed under ESA funding, is designed to exploit the anticipated wealth of data that will be available under GMES missions, such as the Sentinel family of satellites, to provide improved mapping of land surface biophysical parameters. This paper describes the EO-LDAS implementation, and explores some of its core functionality. EO-LDAS is a weak constraint variational dataassimilationsystem. The prototype provides a mechanism for constraint based on a prior estimate of the state vector, a linear dynamic model, and EarthObservationdata (top-of-canopy reflectance here). The observation operator is a non-linear optical radiative transfer model for a vegetation canopy with a soil lower boundary, operating over the range 400 to 2500 nm. Adjoint codes for all model and operator components are provided in the prototype by automatic differentiation of the computer codes. In this paper, EO-LDAS is applied to the problem of daily estimation of six of the parameters controlling the radiative transfer operator over the course of a year (> 2000 state vector elements). Zero and first order process model constraints are implemented and explored as the dynamic model. The assimilation estimates all state vector elements simultaneously. This is performed in the context of a typical Sentinel-2 MSI operating scenario, using synthetic MSI observations simulated with the observation operator, with uncertainties typical of those achieved by optical sensors supposed for the data. The experiments consider a baseline state vector estimation case where dynamic constraints are applied, and assess the impact of dynamic constraints on the a posteriori uncertainties. The results demonstrate that reductions in uncertainty by a factor of up to two might be obtained by applying the sorts of dynamic constraints used here. The hyperparameter (dynamic model uncertainty) required to control the assimilation are estimated by a cross-validation exercise. The result of the assimilation is seen to be robust to missing observations with quite large data gaps.
Resumo:
The formulation and implementation of LEAF-2, the Land Ecosystem–Atmosphere Feedback model, which comprises the representation of land–surface processes in the Regional Atmospheric Modeling System (RAMS), is described. LEAF-2 is a prognostic model for the temperature and water content of soil, snow cover, vegetation, and canopy air, and includes turbulent and radiative exchanges between these components and with the atmosphere. Subdivision of a RAMS surface grid cell into multiple areas of distinct land-use types is allowed, with each subgrid area, or patch, containing its own LEAF-2 model, and each patch interacts with the overlying atmospheric column with a weight proportional to its fractional area in the grid cell. A description is also given of TOPMODEL, a land hydrology model that represents surface and subsurface downslope lateral transport of groundwater. Details of the incorporation of a modified form of TOPMODEL into LEAF-2 are presented. Sensitivity tests of the coupled system are presented that demonstrate the potential importance of the patch representation and of lateral water transport in idealized model simulations. Independent studies that have applied LEAF-2 and verified its performance against observational data are cited. Linkage of RAMS and TOPMODEL through LEAF-2 creates a modeling system that can be used to explore the coupled atmosphere–biophysical–hydrologic response to altered climate forcing at local watershed and regional basin scales.
Resumo:
Flood extents caused by fluvial floods in urban and rural areas may be predicted by hydraulic models. Assimilation may be used to correct the model state and improve the estimates of the model parameters or external forcing. One common observation assimilated is the water level at various points along the modelled reach. Distributed water levels may be estimated indirectly along the flood extents in Synthetic Aperture Radar (SAR) images by intersecting the extents with the floodplain topography. It is necessary to select a subset of levels for assimilation because adjacent levels along the flood extent will be strongly correlated. A method for selecting such a subset automatically and in near real-time is described, which would allow the SAR water levels to be used in a forecasting model. The method first selects candidate waterline points in flooded rural areas having low slope. The waterline levels and positions are corrected for the effects of double reflections between the water surface and emergent vegetation at the flood edge. Waterline points are also selected in flooded urban areas away from radar shadow and layover caused by buildings, with levels similar to those in adjacent rural areas. The resulting points are thinned to reduce spatial autocorrelation using a top-down clustering approach. The method was developed using a TerraSAR-X image from a particular case study involving urban and rural flooding. The waterline points extracted proved to be spatially uncorrelated, with levels reasonably similar to those determined manually from aerial photographs, and in good agreement with those of nearby gauges.
Resumo:
A theoretical framework for the joint conservation of energy and momentum in the parameterization of subgrid-scale processes in climate models is presented. The framework couples a hydrostatic resolved (planetary scale) flow to a nonhydrostatic subgrid-scale (mesoscale) flow. The temporal and horizontal spatial scale separation between the planetary scale and mesoscale is imposed using multiple-scale asymptotics. Energy and momentum are exchanged through subgrid-scale flux convergences of heat, pressure, and momentum. The generation and dissipation of subgrid-scale energy and momentum is understood using wave-activity conservation laws that are derived by exploiting the (mesoscale) temporal and horizontal spatial homogeneities in the planetary-scale flow. The relations between these conservation laws and the planetary-scale dynamics represent generalized nonacceleration theorems. A derived relationship between the wave-activity fluxes-which represents a generalization of the second Eliassen-Palm theorem-is key to ensuring consistency between energy and momentum conservation. The framework includes a consistent formulation of heating and entropy production due to kinetic energy dissipation.
Resumo:
Several methods are examined which allow to produce forecasts for time series in the form of probability assignments. The necessary concepts are presented, addressing questions such as how to assess the performance of a probabilistic forecast. A particular class of models, cluster weighted models (CWMs), is given particular attention. CWMs, originally proposed for deterministic forecasts, can be employed for probabilistic forecasting with little modification. Two examples are presented. The first involves estimating the state of (numerically simulated) dynamical systems from noise corrupted measurements, a problem also known as filtering. There is an optimal solution to this problem, called the optimal filter, to which the considered time series models are compared. (The optimal filter requires the dynamical equations to be known.) In the second example, we aim at forecasting the chaotic oscillations of an experimental bronze spring system. Both examples demonstrate that the considered time series models, and especially the CWMs, provide useful probabilistic information about the underlying dynamical relations. In particular, they provide more than just an approximation to the conditional mean.
Resumo:
Steady state and dynamic models have been developed and applied to the River Kennet system. Annual nitrogen exports from the land surface to the river have been estimated based on land use from the 1930s and the 1990s. Long term modelled trends indicate that there has been a large increase in nitrogen transport into the river system driven by increased fertiliser application associated with increased cereal production, increased population and increased livestock levels. The dynamic model INCA Integrated Nitrogen in Catchments. has been applied to simulate the day-to-day transport of N from the terrestrial ecosystem to the riverine environment. This process-based model generates spatial and temporal data and reproduces the observed instream concentrations. Applying the model to current land use and 1930s land use indicates that there has been a major shift in the short term dynamics since the 1930s, with increased river and groundwater concentrations caused by both non-point source pollution from agriculture and point source discharges. �
Resumo:
Ozone (O3) precursor emissions influence regional and global climate and air quality through changes in tropospheric O3 and oxidants, which also influence methane (CH4) and sulfate aerosols (SO42−). We examine changes in the tropospheric composition of O3, CH4, SO42− and global net radiative forcing (RF) for 20% reductions in global CH4 burden and in anthropogenic O3 precursor emissions (NOx, NMVOC, and CO) from four regions (East Asia, Europe and Northern Africa, North America, and South Asia) using the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model (CTM) simulations, assessing uncertainty (mean ± 1 standard deviation) across multiple CTMs. We evaluate steady state O3 responses, including long-term feedbacks via CH4. With a radiative transfer model that includes greenhouse gases and the aerosol direct effect, we find that regional NOx reductions produce global, annually averaged positive net RFs (0.2 ± 0.6 to 1.7 ± 2 mWm−2/Tg N yr−1), with some variation among models. Negative net RFs result from reductions in global CH4 (−162.6 ± 2 mWm−2 for a change from 1760 to 1408 ppbv CH4) and regional NMVOC (−0.4 ± 0.2 to −0.7 ± 0.2 mWm−2/Tg C yr−1) and CO emissions (−0.13 ± 0.02 to −0.15 ± 0.02 mWm−2/Tg CO yr−1). Including the effect of O3 on CO2 uptake by vegetation likely makes these net RFs more negative by −1.9 to −5.2 mWm−2/Tg N yr−1, −0.2 to −0.7 mWm−2/Tg C yr−1, and −0.02 to −0.05 mWm−2/Tg CO yr−1. Net RF impacts reflect the distribution of concentration changes, where RF is affected locally by changes in SO42−, regionally to hemispherically by O3, and globally by CH4. Global annual average SO42− responses to oxidant changes range from 0.4 ± 2.6 to −1.9 ± 1.3 Gg for NOx reductions, 0.1 ± 1.2 to −0.9 ± 0.8 Gg for NMVOC reductions, and −0.09 ± 0.5 to −0.9 ± 0.8 Gg for CO reductions, suggesting additional research is needed. The 100-year global warming potentials (GWP100) are calculated for the global CH4 reduction (20.9 ± 3.7 without stratospheric O3 or water vapor, 24.2 ± 4.2 including those components), and for the regional NOx, NMVOC, and CO reductions (−18.7 ± 25.9 to −1.9 ± 8.7 for NOx, 4.8 ± 1.7 to 8.3 ± 1.9 for NMVOC, and 1.5 ± 0.4 to 1.7 ± 0.5 for CO). Variation in GWP100 for NOx, NMVOC, and CO suggests that regionally specific GWPs may be necessary and could support the inclusion of O3 precursors in future policies that address air quality and climate change simultaneously. Both global net RF and GWP100 are more sensitive to NOx and NMVOC reductions from South Asia than the other three regions.
Resumo:
A favoured method of assimilating information from state-of-the-art climate models into integrated assessment models of climate impacts is to use the transient climate response (TCR) of the climate models as an input, sometimes accompanied by a pattern matching approach to provide spatial information. More recent approaches to the problem use TCR with another independent piece of climate model output: the land-sea surface warming ratio (φ). In this paper we show why the use of φ in addition to TCR has such utility. Multiple linear regressions of surface temperature change onto TCR and φ in 22 climate models from the CMIP3 multi-model database show that the inclusion of φ explains a much greater fraction of the inter-model variance than using TCR alone. The improvement is particularly pronounced in North America and Eurasia in the boreal summer season, and in the Amazon all year round. The use of φ as the second metric is beneficial for three reasons: firstly it is uncorrelated with TCR in state-of-the-art climate models and can therefore be considered as an independent metric; secondly, because of its projected time-invariance, the magnitude of φ is better constrained than TCR in the immediate future; thirdly, the use of two variables is much simpler than approaches such as pattern scaling from climate models. Finally we show how using the latest estimates of φ from climate models with a mean value of 1.6—as opposed to previously reported values of 1.4—can significantly increase the mean time-integrated discounted damage projections in a state-of-the-art integrated assessment model by about 15 %. When compared to damages calculated without the inclusion of the land-sea warming ratio, this figure rises to 65 %, equivalent to almost 200 trillion dollars over 200 years.
Resumo:
The goal of the Chemistry‐Climate Model Validation (CCMVal) activity is to improve understanding of chemistry‐climate models (CCMs) through process‐oriented evaluation and to provide reliable projections of stratospheric ozone and its impact on climate. An appreciation of the details of model formulations is essential for understanding how models respond to the changing external forcings of greenhouse gases and ozonedepleting substances, and hence for understanding the ozone and climate forecasts produced by the models participating in this activity. Here we introduce and review the models used for the second round (CCMVal‐2) of this intercomparison, regarding the implementation of chemical, transport, radiative, and dynamical processes in these models. In particular, we review the advantages and problems associated with approaches used to model processes of relevance to stratospheric dynamics and chemistry. Furthermore, we state the definitions of the reference simulations performed, and describe the forcing data used in these simulations. We identify some developments in chemistry‐climate modeling that make models more physically based or more comprehensive, including the introduction of an interactive ocean, online photolysis, troposphere‐stratosphere chemistry, and non‐orographic gravity‐wave deposition as linked to tropospheric convection. The relatively new developments indicate that stratospheric CCM modeling is becoming more consistent with our physically based understanding of the atmosphere.
Resumo:
A method to solve a quasi-geostrophic two-layer model including the variation of static stability is presented. The divergent part of the wind is incorporated by means of an iterative procedure. The procedure is rather fast and the time of computation is only 60–70% longer than for the usual two-layer model. The method of solution is justified by the conservation of the difference between the gross static stability and the kinetic energy. To eliminate the side-boundary conditions the experiments have been performed on a zonal channel model. The investigation falls mainly into three parts: The first part (section 5) contains a discussion of the significance of some physically inconsistent approximations. It is shown that physical inconsistencies are rather serious and for these inconsistent models which were studied the total kinetic energy increased faster than the gross static stability. In the next part (section 6) we are studying the effect of a Jacobian difference operator which conserves the total kinetic energy. The use of this operator in two-layer models will give a slight improvement but probably does not have any practical use in short periodic forecasts. It is also shown that the energy-conservative operator will change the wave-speed in an erroneous way if the wave-number or the grid-length is large in the meridional direction. In the final part (section 7) we investigate the behaviour of baroclinic waves for some different initial states and for two energy-consistent models, one with constant and one with variable static stability. According to the linear theory the waves adjust rather rapidly in such a way that the temperature wave will lag behind the pressure wave independent of the initial configuration. Thus, both models give rise to a baroclinic development even if the initial state is quasi-barotropic. The effect of the variation of static stability is very small, qualitative differences in the development are only observed during the first 12 hours. For an amplifying wave we will get a stabilization over the troughs and an instabilization over the ridges.
Resumo:
There is a current need to constrain the parameters of gravity wave drag (GWD) schemes in climate models using observational information instead of tuning them subjectively. In this work, an inverse technique is developed using data assimilation principles to estimate gravity wave parameters. Because mostGWDschemes assume instantaneous vertical propagation of gravity waves within a column, observations in a single column can be used to formulate a one-dimensional assimilation problem to estimate the unknown parameters. We define a cost function that measures the differences between the unresolved drag inferred from observations (referred to here as the ‘observed’ GWD) and the GWD calculated with a parametrisation scheme. The geometry of the cost function presents some difficulties, including multiple minima and ill-conditioning because of the non-independence of the gravity wave parameters. To overcome these difficulties we propose a genetic algorithm to minimize the cost function, which provides a robust parameter estimation over a broad range of prescribed ‘true’ parameters. When real experiments using an independent estimate of the ‘observed’ GWD are performed, physically unrealistic values of the parameters can result due to the non-independence of the parameters. However, by constraining one of the parameters to lie within a physically realistic range, this degeneracy is broken and the other parameters are also found to lie within physically realistic ranges. This argues for the essential physical self-consistency of the gravity wave scheme. A much better fit to the observed GWD at high latitudes is obtained when the parameters are allowed to vary with latitude. However, a close fit can be obtained either in the upper or the lower part of the profiles, but not in both at the same time. This result is a consequence of assuming an isotropic launch spectrum. The changes of sign in theGWDfound in the tropical lower stratosphere, which are associated with part of the quasi-biennial oscillation forcing, cannot be captured by the parametrisation with optimal parameters.
Resumo:
We discuss the modeling of dielectric responses of electromagnetically excited networks which are composed of a mixture of capacitors and resistors. Such networks can be employed as lumped-parameter circuits to model the response of composite materials containing conductive and insulating grains. The dynamics of the excited network systems are studied using a state space model derived from a randomized incidence matrix. Time and frequency domain responses from synthetic data sets generated from state space models are analyzed for the purpose of estimating the fraction of capacitors in the network. Good results were obtained by using either the time-domain response to a pulse excitation or impedance data at selected frequencies. A chemometric framework based on a Successive Projections Algorithm (SPA) enables the construction of multiple linear regression (MLR) models which can efficiently determine the ratio of conductive to insulating components in composite material samples. The proposed method avoids restrictions commonly associated with Archie’s law, the application of percolation theory or Kohlrausch-Williams-Watts models and is applicable to experimental results generated by either time domain transient spectrometers or continuous-wave instruments. Furthermore, it is quite generic and applicable to tomography, acoustics as well as other spectroscopies such as nuclear magnetic resonance, electron paramagnetic resonance and, therefore, should be of general interest across the dielectrics community.
Resumo:
We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover, composition and 5 height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, 10 and are compared to scores based on the temporal or spatial mean value of the observations and a “random” model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), and the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global 15 vegetation models (DGVMs). SDBM reproduces observed CO2 seasonal cycles, but its simulation of independent measurements of net primary production (NPP) is too high. The two DGVMs show little difference for most benchmarks (including the interannual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified 20 several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change 25 impacts and feedbacks.
Resumo:
Wide ranging climate changes are expected in the Arctic by the end of the 21st century, but projections of the size of these changes vary widely across current global climate models. This variation represents a large source of uncertainty in our understanding of the evolution of Arctic climate. Here we systematically quantify and assess the model uncertainty in Arctic climate changes in two CO2 doubling experiments: a multimodel ensemble (CMIP3) and an ensemble constructed using a single model (HadCM3) with multiple parameter perturbations (THC-QUMP). These two ensembles allow us to assess the contribution that both structural and parameter variations across models make to the total uncertainty and to begin to attribute sources of uncertainty in projected changes. We find that parameter uncertainty is an major source of uncertainty in certain aspects of Arctic climate. But also that uncertainties in the mean climate state in the 20th century, most notably in the northward Atlantic ocean heat transport and Arctic sea ice volume, are a significant source of uncertainty for projections of future Arctic change. We suggest that better observational constraints on these quantities will lead to significant improvements in the precision of projections of future Arctic climate change.
Resumo:
Within the warm conveyor belt of extra-tropical cyclones, atmospheric rivers (ARs) are the key synoptic features which deliver the majority of poleward water vapour transport, and are associated with episodes of heavy and prolonged rainfall. ARs are responsible for many of the largest winter floods in the mid-latitudes resulting in major socioeconomic losses; for example, the loss from United Kingdom (UK) flooding in summer/winter 2012 is estimated to be about $1.6 billion in damages. Given the well-established link between ARs and peak river flows for the present day, assessing how ARs could respond under future climate projections is of importance in gauging future impacts from flooding. We show that North Atlantic ARs are projected to become stronger and more numerous in the future scenarios of multiple simulations from five state-of-the-art global climate models (GCMs) in the fifth Climate Model Intercomparison Project (CMIP5). The increased water vapour transport in projected ARs implies a greater risk of higher rainfall totals and therefore larger winter floods in Britain, with increased AR frequency leading to more flood episodes. In the high emissions scenario (RCP8.5) for 2074–2099 there is an approximate doubling of AR frequency in the five GCMs. Our results suggest that the projected change in ARs is predominantly a thermodynamic response to warming resulting from anthropogenic radiative forcing.