139 resultados para Multidimensional Compressible Flows
The unsteady flow of a weakly compressible fluid in a thin porous layer II: three-dimensional theory
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a three-dimensional layer, composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Numerical solution of this three-dimensional evolution problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l, a situation which occurs frequently in the application to oil and gas reservoir recovery and which leads to significant stiffness in the numerical problem. Under the assumption that $\epsilon\propto h/l\ll 1$, we show that, to leading order in $\epsilon$, the pressure field varies only in the horizontal directions away from the wells (the outer region). We construct asymptotic expansions in $\epsilon$ in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive expressions for all significant process quantities. The only computations required are for the solution of non-stiff linear, elliptic, two-dimensional boundary-value, and eigenvalue problems. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the layer, $\epsilon$, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighbourhood of wells and away from wells.
Resumo:
We describe a novel method for determining the pressure and velocity fields for a weakly compressible fluid flowing in a thin three-dimensional layer composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Our approach uses the method of matched asymptotic expansions to derive expressions for all significant process quantities, the computation of which requires only the solution of linear, elliptic, two-dimensional boundary value and eigenvalue problems. In this article, we provide full implementation details and present numerical results demonstrating the efficiency and accuracy of our scheme.
Resumo:
We describe ncWMS, an implementation of the Open Geospatial Consortium’s Web Map Service (WMS) specification for multidimensional gridded environmental data. ncWMS can read data in a large number of common scientific data formats – notably the NetCDF format with the Climate and Forecast conventions – then efficiently generate map imagery in thousands of different coordinate reference systems. It is designed to require minimal configuration from the system administrator and, when used in conjunction with a suitable client tool, provides end users with an interactive means for visualizing data without the need to download large files or interpret complex metadata. It is also used as a “bridging” tool providing interoperability between the environmental science community and users of geographic information systems. ncWMS implements a number of extensions to the WMS standard in order to fulfil some common scientific requirements, including the ability to generate plots representing timeseries and vertical sections. We discuss these extensions and their impact upon present and future interoperability. We discuss the conceptual mapping between the WMS data model and the data models used by gridded data formats, highlighting areas in which the mapping is incomplete or ambiguous. We discuss the architecture of the system and particular technical innovations of note, including the algorithms used for fast data reading and image generation. ncWMS has been widely adopted within the environmental data community and we discuss some of the ways in which the software is integrated within data infrastructures and portals.
Resumo:
The Earth’s climate, as well as planetary climates in general, is broadly regulated by three fundamental parameters: the total solar irradiance, the planetary albedo and the planetary emissivity. Observations from series of different satellites during the last three decades indicate that these three quantities are generally very stable. The total solar irradiation of some 1,361 W/m2 at 1 A.U. varies within 1 W/m2 during the 11-year solar cycle (Fröhlich 2012). The albedo is close to 29 % with minute changes from year to year but with marked zonal differences (Stevens and Schwartz 2012). The only exception to the overall stability is a minor decrease in the planetary emissivity (the ratio between the radiation to space and the radiation from the surface of the Earth). This is a consequence of the increase in atmospheric greenhouse gas amounts making the atmosphere gradually more opaque to long-wave terrestrial radiation. As a consequence, radiation processes are slightly out of balance as less heat is leaving the Earth in the form of thermal radiation than the amount of heat from the incoming solar radiation. Present space-based systems cannot yet measure this imbalance, but the effect can be inferred from the increase in heat in the oceans where most of the heat accumulates. Minor amounts of heat are used to melt ice and to warm the atmosphere and the surface of the Earth.
Resumo:
We consider second kind integral equations of the form x(s) - (abbreviated x - K x = y ), in which Ω is some unbounded subset of Rn. Let Xp denote the weighted space of functions x continuous on Ω and satisfying x (s) = O(|s|-p ),s → ∞We show that if the kernel k(s,t) decays like |s — t|-q as |s — t| → ∞ for some sufficiently large q (and some other mild conditions on k are satisfied), then K ∈ B(XP) (the set of bounded linear operators on Xp), for 0 ≤ p ≤ q. If also (I - K)-1 ∈ B(X0) then (I - K)-1 ∈ B(XP) for 0 < p < q, and (I- K)-1∈ B(Xq) if further conditions on k hold. Thus, if k(s, t) = O(|s — t|-q). |s — t| → ∞, and y(s)=O(|s|-p), s → ∞, the asymptotic behaviour of the solution x may be estimated as x (s) = O(|s|-r), |s| → ∞, r := min(p, q). The case when k(s,t) = к(s — t), so that the equation is of Wiener-Hopf type, receives especial attention. Conditions, in terms of the symbol of I — K, for I — K to be invertible or Fredholm on Xp are established for certain cases (Ω a half-space or cone). A boundary integral equation, which models three-dimensional acoustic propaga-tion above flat ground, absorbing apart from an infinite rigid strip, illustrates the practical application and sharpness of the above results. This integral equation mod-els, in particular, road traffic noise propagation along an infinite road surface sur-rounded by absorbing ground. We prove that the sound propagating along the rigid road surface eventually decays with distance at the same rate as sound propagating above the absorbing ground.
Resumo:
The energy-Casimir stability method, also known as the Arnold stability method, has been widely used in fluid dynamical applications to derive sufficient conditions for nonlinear stability. The most commonly studied system is two-dimensional Euler flow. It is shown that the set of two-dimensional Euler flows satisfying the energy-Casimir stability criteria is empty for two important cases: (i) domains having the topology of the sphere, and (ii) simply-connected bounded domains with zero net vorticity. The results apply to both the first and the second of Arnold’s stability theorems. In the spirit of Andrews’ theorem, this puts a further limitation on the applicability of the method. © 2000 American Institute of Physics.
Resumo:
The non-quadratic conservation laws of the two-dimensional Euler equations are used to show that the gravest modes in a doubly-periodic domain with aspect ratio L = 1 are stable up to translations (or structurally stable) for finite-amplitude disturbances. This extends a previous result based on conservation of energy and enstrophy alone. When L 1, a saturation bound is established for the mode with wavenumber |k| = L −1 (the next-gravest mode), which is linearly unstable. The method is applied to prove nonlinear structural stability of planetary wave two on a rotating sphere.
Resumo:
There exists a well-developed body of theory based on quasi-geostrophic (QG) dynamics that is central to our present understanding of large-scale atmospheric and oceanic dynamics. An important question is the extent to which this body of theory may generalize to more accurate dynamical models. As a first step in this process, we here generalize a set of theoretical results, concerning the evolution of disturbances to prescribed basic states, to semi-geostrophic (SG) dynamics. SG dynamics, like QG dynamics, is a Hamiltonian balanced model whose evolution is described by the material conservation of potential vorticity, together with an invertibility principle relating the potential vorticity to the advecting fields. SG dynamics has features that make it a good prototype for balanced models that are more accurate than QG dynamics. In the first part of this two-part study, we derive a pseudomomentum invariant for the SG equations, and use it to obtain: (i) linear and nonlinear generalized Charney–Stern theorems for disturbances to parallel flows; (ii) a finite-amplitude local conservation law for the invariant, obeying the group-velocity property in the WKB limit; and (iii) a wave-mean-flow interaction theorem consisting of generalized Eliassen–Palm flux diagnostics, an elliptic equation for the stream-function tendency, and a non-acceleration theorem. All these results are analogous to their QG forms. The pseudomomentum invariant – a conserved second-order disturbance quantity that is associated with zonal symmetry – is constructed using a variational principle in a similar manner to the QG calculations. Such an approach is possible when the equations of motion under the geostrophic momentum approximation are transformed to isentropic and geostrophic coordinates, in which the ageostrophic advection terms are no longer explicit. Symmetry-related wave-activity invariants such as the pseudomomentum then arise naturally from the Hamiltonian structure of the SG equations. We avoid use of the so-called ‘massless layer’ approach to the modelling of isentropic gradients at the lower boundary, preferring instead to incorporate explicitly those boundary contributions into the wave-activity and stability results. This makes the analogy with QG dynamics most transparent. This paper treats the f-plane Boussinesq form of SG dynamics, and its recent extension to β-plane, compressible flow by Magnusdottir & Schubert. In the limit of small Rossby number, the results reduce to their respective QG forms. Novel features particular to SG dynamics include apparently unnoticed lateral boundary stability criteria in (i), and the necessity of including additional zonal-mean eddy correlation terms besides the zonal-mean potential vorticity fluxes in the wave-mean-flow balance in (iii). In the companion paper, wave-activity conservation laws and stability theorems based on the SG form of the pseudoenergy are presented.
Resumo:
A novel method is presented for obtaining rigorous upper bounds on the finite-amplitude growth of instabilities to parallel shear flows on the beta-plane. The method relies on the existence of finite-amplitude Liapunov (normed) stability theorems, due to Arnol'd, which are nonlinear generalizations of the classical stability theorems of Rayleigh and Fjørtoft. Briefly, the idea is to use the finite-amplitude stability theorems to constrain the evolution of unstable flows in terms of their proximity to a stable flow. Two classes of general bounds are derived, and various examples are considered. It is also shown that, for a certain kind of forced-dissipative problem with dissipation proportional to vorticity, the finite-amplitude stability theorems (which were originally derived for inviscid, unforced flow) remain valid (though they are no longer strictly Liapunov); the saturation bounds therefore continue to hold under these conditions.
Resumo:
n a recent paper, Petroniet al. claim that a necessary condition for the instability of two-dimensional steady flows is a «double cascade» of energy and enstrophy respectively to larger and to smaller scales of motion. It is shown here that the analytical reasoning employed by Petroniet al. is flawed and that their conclusions are incorrect. What is true is that in any scale interaction (whether an instability or not), neither energy nor enstrophy can be transferred in one spectral direction only, but this result is extremely well known.
Resumo:
Disturbances of arbitrary amplitude are superposed on a basic flow which is assumed to be steady and either (a) two-dimensional, homogeneous, and incompressible (rotating or non-rotating) or (b) stably stratified and quasi-geostrophic. Flow over shallow topography is allowed in either case. The basic flow, as well as the disturbance, is assumed to be subject neither to external forcing nor to dissipative processes like viscosity. An exact, local ‘wave-activity conservation theorem’ is derived in which the density A and flux F are second-order ‘wave properties’ or ‘disturbance properties’, meaning that they are O(a2) in magnitude as disturbance amplitude a [rightward arrow] 0, and that they are evaluable correct to O(a2) from linear theory, to O(a3) from second-order theory, and so on to higher orders in a. For a disturbance in the form of a single, slowly varying, non-stationary Rossby wavetrain, $\overline{F}/\overline{A}$ reduces approximately to the Rossby-wave group velocity, where (${}^{-}$) is an appropriate averaging operator. F and A have the formal appearance of Eulerian quantities, but generally involve a multivalued function the correct branch of which requires a certain amount of Lagrangian information for its determination. It is shown that, in a certain sense, the construction of conservable, quasi-Eulerian wave properties like A is unique and that the multivaluedness is inescapable in general. The connection with the concepts of pseudoenergy (quasi-energy), pseudomomentum (quasi-momentum), and ‘Eliassen-Palm wave activity’ is noted. The relationship of this and similar conservation theorems to dynamical fundamentals and to Arnol'd's nonlinear stability theorems is discussed in the light of recent advances in Hamiltonian dynamics. These show where such conservation theorems come from and how to construct them in other cases. An elementary proof of the Hamiltonian structure of two-dimensional Eulerian vortex dynamics is put on record, with explicit attention to the boundary conditions. The connection between Arnol'd's second stability theorem and the suppression of shear and self-tuning resonant instabilities by boundary constraints is discussed, and a finite-amplitude counterpart to Rayleigh's inflection-point theorem noted
Resumo:
We obtain sharp estimates for multidimensional generalisations of Vinogradov’s mean value theorem for arbitrary translation-dilation invariant systems, achieving constraints on the number of variables approaching those conjectured to be the best possible. Several applications of our bounds are discussed.
Resumo:
Although it plays a key role in the theory of stratified turbulence, the concept of available potential energy (APE) dissipation has remained until now a rather mysterious quantity, owing to the lack of rigorous result about its irreversible character or energy conversion type. Here, we show by using rigorous energetics considerations rooted in the analysis of the Navier-Stokes for a fully compressible fluid with a nonlinear equation of state that the APE dissipation is an irreversible energy conversion that dissipates kinetic energy into internal energy, exactly as viscous dissipation. These results are established by showing that APE dissipation contributes to the irreversible production of entropy, and by showing that it is a part of the work of expansion/contraction. Our results provide a new interpretation of the entropy budget, that leads to a new exact definition of turbulent effective diffusivity, which generalizes the Osborn-Cox model, as well as a rigorous decomposition of the work of expansion/contraction into reversible and irreversible components. In the context of turbulent mixing associated with parallel shear flow instability, our results suggests that there is no irreversible transfer of horizontal momentum into vertical momentum, as seems to be required when compressible effects are neglected, with potential consequences for the parameterisations of momentum dissipation in the coarse-grained Navier-Stokes equations.