105 resultados para Mixed model equations
Resumo:
Recent research into flood modelling has primarily concentrated on the simulation of inundation flow without considering the influences of channel morphology. River channels are often represented by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. However, field evidence demonstrates that significant morphological changes can occur during floods to mobilise the boundary sediments. Despite this, the effect of channel morphology on model results has been largely unexplored. To address this issue, the impact of channel cross-section geometry and channel long-profile variability on flood dynamics is examined using an ensemble of a 1D-2D hydraulic model (LISFLOOD-FP) of the 1:2102 year recurrence interval floods in Cockermouth, UK, within an uncertainty framework. A series of hypothetical scenarios of channel morphology were constructed based on a simple velocity based model of critical entrainment. A Monte-Carlo simulation framework was used to quantify the effects of channel morphology together with variations in the channel and floodplain roughness coefficients, grain size characteristics, and critical shear stress on measures of flood inundation. The results showed that the bed elevation modifications generated by the simplistic equations reflected a good approximation of the observed patterns of spatial erosion despite its overestimation of erosion depths. The effect of uncertainty on channel long-profile variability only affected the local flood dynamics and did not significantly affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models generally do not need to account for within event morphodynamic changes of the type and magnitude modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. boundary conditions. Instead morphodynamic change needs to happen over a series of events to become large enough to change the hydrodynamics of floods in supply limited gravel-bed rivers like the one used in this research.
Resumo:
Biological models of an apoptotic process are studied using models describing a system of differential equations derived from reaction kinetics information. The mathematical model is re-formulated in a state-space robust control theory framework where parametric and dynamic uncertainty can be modelled to account for variations naturally occurring in biological processes. We propose to handle the nonlinearities using neural networks.
Resumo:
Many studies evaluating model boundary-layer schemes focus either on near-surface parameters or on short-term observational campaigns. This reflects the observational datasets that are widely available for use in model evaluation. In this paper we show how surface and long-term Doppler lidar observations, combined in a way to match model representation of the boundary layer as closely as possible, can be used to evaluate the skill of boundary-layer forecasts. We use a 2-year observational dataset from a rural site in the UK to evaluate a climatology of boundary layer type forecast by the UK Met Office Unified Model. In addition, we demonstrate the use of a binary skill score (Symmetric Extremal Dependence Index) to investigate the dependence of forecast skill on season, horizontal resolution and forecast leadtime. A clear diurnal and seasonal cycle can be seen in the climatology of both the model and observations, with the main discrepancies being the model overpredicting cumulus capped and decoupled stratocumulus capped boundary-layers and underpredicting well mixed boundary-layers. Using the SEDI skill score the model is most skillful at predicting the surface stability. The skill of the model in predicting cumulus capped and stratocumulus capped stable boundary layer forecasts is low but greater than a 24 hr persistence forecast. In contrast, the prediction of decoupled boundary-layers and boundary-layers with multiple cloud layers is lower than persistence. This process based evaluation approach has the potential to be applied to other boundary-layer parameterisation schemes with similar decision structures.
Resumo:
Wave solutions to a mechanochemical model for cytoskeletal activity are studied and the results applied to the waves of chemical and mechanical activity that sweep over an egg shortly after fertilization. The model takes into account the calcium-controlled presence of actively contractile units in the cytoplasm, and consists of a viscoelastic force equilibrium equation and a conservation equation for calcium. Using piecewise linear caricatures, we obtain analytic solutions for travelling waves on a strip and demonstrate uiat the full nonlinear system behaves as predicted by the analytic solutions. The equations are solved on a sphere and the numerical results are similar to the analytic solutions. We indicate how the speed of the waves can be used as a diagnostic tool with which the chemical reactivity of the egg surface can be measured.
Resumo:
We compare the quasi-equilibrium heat balances, as well as their responses to 4×CO2 perturbation, among three global climate models with the aim to identify and explain inter-model differences in ocean heat uptake (OHU) processes. We find that, in quasi-equilibrium, convective and mixed layer processes, as well as eddy-related processes, cause cooling of the subsurface ocean. The cooling is balanced by warming caused by advective and diapycnally diffusive processes. We also find that in the CO2-perturbed climates the largest contribution to OHU comes from changes in vertical mixing processes and the mean circulation, particularly in the extra-tropics, caused both by changes in wind forcing, and by changes in high-latitude buoyancy forcing. There is a substantial warming in the tropics, a significant part of which occurs because of changes in horizontal advection in extra-tropics. Diapycnal diffusion makes only a weak contribution to the OHU, mainly in the tropics, due to increased stratification. There are important qualitative differences in the contribution of eddy-induced advection and isopycnal diffusion to the OHU among the models. The former is related to the different values of the coefficients used in the corresponding scheme. The latter is related to the different tapering formulations of the isopycnal diffusion scheme. These differences affect the OHU in the deep ocean, which is substantial in two of the models, the dominant region of deep warming being the Southern Ocean. However, most of the OHU takes place above 2000 m, and the three models are quantitatively similar in their global OHU efficiency and its breakdown among processes and as a function of latitude.
Resumo:
An isotope dilution model for partitioning phenylalanine and tyrosine uptake by the mammary gland of the lactating dairy cow is constructed and solved in the steady state. The model contains four intracellular and four extracellular pools and conservation of mass principles are applied to generate the fundamental equations describing the behaviour of the system. The experimental measurements required for model solution are milk secretion and plasma flow rate across the gland in combination with phenylalanine and tyrosine concentrations and plateau isotopic enrichments in arterial and venous plasma and free and protein bound milk during a constant infusion of [1-(13)C]phenylalanine and [2,3,5,6-(2)H]tyrosine tracer. If assumptions are made, model solution enables determination of steady state flows for phenylalanine and tyrosine inflow to the gland, outflow from it and bypass, and flows representing the synthesis and degradation of constitutive protein and hydroxylation. The model is effective in providing information about the fates of phenylalanine and tyrosine in the mammary gland and could be used as part of a more complex system describing amino acid metabolism in the whole ruminant.
Resumo:
Neural stem cells (NSCs) are early precursors of neuronal and glial cells. NSCs are capable of generating identical progeny through virtually unlimited numbers of cell divisions (cell proliferation), producing daughter cells committed to differentiation. Nuclear factor kappa B (NF-kappaB) is an inducible, ubiquitous transcription factor also expressed in neurones, glia and neural stem cells. Recently, several pieces of evidence have been provided for a central role of NF-kappaB in NSC proliferation control. Here, we propose a novel mathematical model for NF-kappaB-driven proliferation of NSCs. We have been able to reconstruct the molecular pathway of activation and inactivation of NF-kappaB and its influence on cell proliferation by a system of nonlinear ordinary differential equations. Then we use a combination of analytical and numerical techniques to study the model dynamics. The results obtained are illustrated by computer simulations and are, in general, in accordance with biological findings reported by several independent laboratories. The model is able to both explain and predict experimental data. Understanding of proliferation mechanisms in NSCs may provide a novel outlook in both potential use in therapeutic approaches, and basic research as well.
Resumo:
Increases in cloud optical depth and liquid water path (LWP) are robust features of global warming model simulations in high latitudes, yielding a negative shortwave cloud feedback, but the mechanisms are still uncertain. We assess the importance of microphysical processes for the negative optical depth feedback by perturbing temperature in the microphysics schemes of two aquaplanet models, both of which have separate prognostic equations for liquid water and ice. We find that most of the LWP increase with warming is caused by a suppression of ice microphysical processes in mixed-phase clouds, resulting in reduced conversion efficiencies of liquid water to ice and precipitation. Perturbing the temperature-dependent phase partitioning of convective condensate also yields a small LWP increase. Together, the perturbations in large-scale microphysics and convective condensate partitioning explain more than two-thirds of the LWP response relative to a reference case with increased SSTs, and capture all of the vertical structure of the liquid water response. In support of these findings, we show the existence of a very robust positive relationship between monthly-mean LWP and temperature in CMIP5 models and observations in mixed-phase cloud regions only. In models, the historical LWP sensitivity to temperature is a good predictor of the forced global warming response poleward of about 45°, although models appear to overestimate the LWP response to warming compared to observations. We conclude that in climate models, the suppression of ice-phase microphysical processes that deplete cloud liquid water is a key driver of the LWP increase with warming and of the associated negative shortwave cloud feedback.
Resumo:
Increasing optical depth poleward of 45° is a robust response to warming in global climate models. Much of this cloud optical depth increase has been hypothesized to be due to transitions from ice-dominated to liquid-dominated mixed-phase cloud. In this study, the importance of liquid-ice partitioning for the optical depth feedback is quantified for 19 Coupled Model Intercomparison Project Phase 5 models. All models show a monotonic partitioning of ice and liquid as a function of temperature, but the temperature at which ice and liquid are equally mixed (the glaciation temperature) varies by as much as 40 K across models. Models that have a higher glaciation temperature are found to have a smaller climatological liquid water path (LWP) and condensed water path and experience a larger increase in LWP as the climate warms. The ice-liquid partitioning curve of each model may be used to calculate the response of LWP to warming. It is found that the repartitioning between ice and liquid in a warming climate contributes at least 20% to 80% of the increase in LWP as the climate warms, depending on model. Intermodel differences in the climatological partitioning between ice and liquid are estimated to contribute at least 20% to the intermodel spread in the high-latitude LWP response in the mixed-phase region poleward of 45°S. It is hypothesized that a more thorough evaluation and constraint of global climate model mixed-phase cloud parameterizations and validation of the total condensate and ice-liquid apportionment against observations will yield a substantial reduction in model uncertainty in the high-latitude cloud response to warming.
Resumo:
The concentrations of sulfate, black carbon (BC) and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze) and low values in summer. Models have long been struggling to capture this seasonality and especially the high concentrations associated with Arctic Haze. In this study, we evaluate sulfate and BC concentrations from eleven different models driven with the same emission inventory against a comprehensive pan-Arctic measurement data set over a time period of 2 years (2008–2009). The set of models consisted of one Lagrangian particle dispersion model, four chemistry transport models (CTMs), one atmospheric chemistry-weather forecast model and five chemistry climate models (CCMs), of which two were nudged to meteorological analyses and three were running freely. The measurement data set consisted of surface measurements of equivalent BC (eBC) from five stations (Alert, Barrow, Pallas, Tiksi and Zeppelin), elemental carbon (EC) from Station Nord and Alert and aircraft measurements of refractory BC (rBC) from six different campaigns. We find that the models generally captured the measured eBC or rBC and sulfate concentrations quite well, compared to previous comparisons. However, the aerosol seasonality at the surface is still too weak in most models. Concentrations of eBC and sulfate averaged over three surface sites are underestimated in winter/spring in all but one model (model means for January–March underestimated by 59 and 37 % for BC and sulfate, respectively), whereas concentrations in summer are overestimated in the model mean (by 88 and 44 % for July–September), but with overestimates as well as underestimates present in individual models. The most pronounced eBC underestimates, not included in the above multi-site average, are found for the station Tiksi in Siberia where the measured annual mean eBC concentration is 3 times higher than the average annual mean for all other stations. This suggests an underestimate of BC sources in Russia in the emission inventory used. Based on the campaign data, biomass burning was identified as another cause of the modeling problems. For sulfate, very large differences were found in the model ensemble, with an apparent anti-correlation between modeled surface concentrations and total atmospheric columns. There is a strong correlation between observed sulfate and eBC concentrations with consistent sulfate/eBC slopes found for all Arctic stations, indicating that the sources contributing to sulfate and BC are similar throughout the Arctic and that the aerosols are internally mixed and undergo similar removal. However, only three models reproduced this finding, whereas sulfate and BC are weakly correlated in the other models. Overall, no class of models (e.g., CTMs, CCMs) performed better than the others and differences are independent of model resolution.
Resumo:
Intercomparison and evaluation of the global ocean surface mixed layer depth (MLD) fields estimated from a suite of major ocean syntheses are conducted. Compared with the reference MLDs calculated from individual profiles, MLDs calculated from monthly mean and gridded profiles show negative biases of 10–20 m in early spring related to the re-stratification process of relatively deep mixed layers. Vertical resolution of profiles also influences the MLD estimation. MLDs are underestimated by approximately 5–7 (14–16) m with the vertical resolution of 25 (50) m when the criterion of potential density exceeding the 10-m value by 0.03 kg m−3 is used for the MLD estimation. Using the larger criterion (0.125 kg m−3) generally reduces the underestimations. In addition, positive biases greater than 100 m are found in wintertime subpolar regions when MLD criteria based on temperature are used. Biases of the reanalyses are due to both model errors and errors related to differences between the assimilation methods. The result shows that these errors are partially cancelled out through the ensemble averaging. Moreover, the bias in the ensemble mean field of the reanalyses is smaller than in the observation-only analyses. This is largely attributed to comparably higher resolutions of the reanalyses. The robust reproduction of both the seasonal cycle and interannual variability by the ensemble mean of the reanalyses indicates a great potential of the ensemble mean MLD field for investigating and monitoring upper ocean processes.
Resumo:
The interaction between tryptophan-rich puroindoline proteins and model bacterial membranes at the air-liquid interface has been investigated by FTIR spectroscopy, surface pressure measurements and Brewster angle microscopy. The role of different lipid constituents on the interactions between lipid membrane and protein was studied using wild type (Pin-b) and mutant (Trp44 to Arg44 mutant, Pin-bs) puroindoline proteins. The results show differences in the lipid selectivity of the two proteins in terms of preferential binding to specific lipid head groups in mixed lipid systems. Pin-b wild type was able to penetrate mixed layers of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) head groups more deeply compared to the mutant Pin-bs. Increasing saturation of the lipid tails increased penetration and adsorption of Pin-b wild type, but again the response of the mutant form differed. The results provide insight as to the role of membrane architecture, lipid composition and fluidity, on antimicrobial activity of proteins. Data show distinct differences in the lipid binding behavior of Pin-b as a result of a single residue mutation, highlighting the importance of hydrophobic and charged amino acids in antimicrobial protein and peptide activity.
Resumo:
The impact of extreme sea ice initial conditions on modelled climate is analysed for a fully coupled atmosphere ocean sea ice general circulation model, the Hadley Centre climate model HadCM3. A control run is chosen as reference experiment with greenhouse gas concentration fixed at preindustrial conditions. Sensitivity experiments show an almost complete recovery from total removal or strong increase of sea ice after four years. Thus, uncertainties in initial sea ice conditions seem to be unimportant for climate modelling on decadal or longer time scales. When the initial conditions of the ocean mixed layer were adjusted to ice-free conditions, a few substantial differences remained for more than 15 model years. But these differences are clearly smaller than the uncertainty of the HadCM3 run and all the other 19 IPCC fourth assessment report climate model preindustrial runs. It is an important task to improve climate models in simulating the past sea ice variability to enable them to make reliable projections for the 21st century.
Resumo:
We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice–atmosphere and ice–ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice–ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities.
Resumo:
Trust is one of the most important factors that influence the successful application of network service environments, such as e-commerce, wireless sensor networks, and online social networks. Computation models associated with trust and reputation have been paid special attention in both computer societies and service science in recent years. In this paper, a dynamical computation model of reputation for B2C e-commerce is proposed. Firstly, conceptions associated with trust and reputation are introduced, and the mathematical formula of trust for B2C e-commerce is given. Then a dynamical computation model of reputation is further proposed based on the conception of trust and the relationship between trust and reputation. In the proposed model, classical varying processes of reputation of B2C e-commerce are discussed. Furthermore, the iterative trust and reputation computation models are formulated via a set of difference equations based on the closed-loop feedback mechanism. Finally, a group of numerical simulation experiments are performed to illustrate the proposed model of trust and reputation. Experimental results show that the proposed model is effective in simulating the dynamical processes of trust and reputation for B2C e-commerce.