148 resultados para Metal complexes. Characterization. Synthesis
Resumo:
In the title family, the ONO donor ligands are the acetylhydrazones of salicylaidehyde (H2L1) and 2-hydroxyacetophenone (H2L2) (general abbreviation, H2L). The reaction of bis(acetylacetonato)oxovanadium(IV) with a mixture of tridentate H2L and a bidentate NN donor [e.g., 2,2'-bipyridine(bpy) or 1,10-phenanthroline(phen), hereafter B] ligands in equimolar ratio afforded the tetravalent complexes of the type [(VO)-O-IV(L)(B)]; complexes (1)-(4) whereas, if B is replaced by 8-hydroxyquinoline(Hhq) (which is a bidentate ON donor ligand), the above reaction mixture yielded the pentavalent complexes of the type [(VO)-O-V(L)(hq)]; complexes (5) and (6). Aerial oxygen is most likely the oxidant (for the oxidation of V-IV -> V-V) in the synthesis of pentavalent complexes (5) and (6). [(VO)-O-IV(L)(B)] complexes are one electron paramagnetic and display axial EPR spectra, while the [(VO)-O-V(L)(hq)] complexes are diamagnetic. The X-ray structure of [(VO)-O-V(L-2)(hq)] (6) indicates that H2L2 ligand is bonded with the vanadium meridionally in a tridentate dinegative fashion through its phenolic-O, enolic-O and imine-N atoms. The general bond length order is: oxo < phenolato < enolato. The V-O (enolato) bond is longer than V-O (phenolato) bond by similar to 0.07 angstrom and is identical with V-O (carboxylate) bond. H-1 NMR spectrum of (6) in CDCl3 solution indicates that the binding nature in the solid state is also retained in solution. Complexes (1)(4) display two ligand-field transitions in the visible region near 820 and 480 nm in DMF solution and exhibit irreversible oxidation peak near +0.60 V versus SCE in DMSO solution, while complexes (5) and (6) exhibit only LMCT band near 535 nm and display quasi-reversible one electron reduction peak near -0.10 V versus SCE in CH2Cl2 solution. The VO3+-VO2+ E-1/2 values shift considerably to more negative values when neutral NN donor is replaced by anionic ON donor species and it also provides better VO3+ binding via phenolato oxygen. For a given bidentate ligand, E-1/2 increases in the order: (L-2)(2-) < (L-1)(2-). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Four tridentate dibasic ONO donor hydrazone ligands derived from the condensation of benzoylhydrazine with either 2-hydroxyacetophenone or its para substituted derivatives (H2L1-4, general abbreviation H2L) have been used as primary ligands and 8-hydroxyquinoline (Hhq, a bidentate monobasic ON donor species) has been used as auxiliary ligand. The reaction of [(VO)-O-IV(acac)21 with H2L in methanol followed by the addition of Hhq in equimolar ratio under aerobic condition afforded the mixed-ligand oxovanadium(V) complexes of the type [(VO)-O-V(L)(hq)] (1-4) in excellent yield. The X-ray structure of the compound [(VO)-O-V(L-4)(hq)] (4) indicates that the H2L4 ligand is bonded with vanadium meridionally in a tridentate dinegative fashion through its deprotonated phenolic-O, deprotonated enolic-O and imine-N atoms. The V-O bond length order is: oxo < phenolato < enolato. H-1 NMR spectra of 4 in CDCl3 solution indicates that it's solid-state structure is retained in solution. Complexes are diamagnetic and exhibit only ligand to metal charge transfer (LMCT) transition band near 530 nm in CH2Cl2 solution in addition to intra-ligand pi-pi* transition band near 335 rim and they display quasi-reversible one electron reduction peak near -0.10 V versus SCE in CH2Cl2 solution. lambda(max) (for LMCT transition) and the reduction peak potential (E-p(c)) values of the complexes are found to be linearly related with the Hammett (sigma) constants of the substituents in the aryloxy ring of the hydrazone ligands. lambda(max) and E-p(c) values show large dependence d lambda(max)/d sigma = 32.54 nm and dE(p)(c)/d sigma = 0.19 V, respectively, on the Hammett constant. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
New N-(3-aminopropyl) (L-1, L-2) and (2-cyanoethyl) (L-3, L-4) derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized. The protonation constants of L-1 and L-2 and the stability constants of their complexes with Ni2+, Cu2+, Zn2+ and Cd2+ metal ions were determined in aqueous solutions by potentiometry, at 298.2 K and ionic strength 0.10 mol dm(-3) in KNO3. Both compounds have high overall basicity due to the presence of the aminopropyl arms. Their copper(II) complexes exhibit very high stability constants, which sharply decrease for the complexes of the other studied metal ions, as usually happens with polyamine ligands. Mono- and dinuclear complexes are formed with L-2 as well as with L-1, but the latter exhibits mononuclear complexes with slightly higher K-ML values while the dinuclear complexes of L-2 are thermodynamically more stable. The presence of these species in solution was supported by UV-VIS-NIR and EPR spectroscopic data. The single crystal structures of [Cu(H2L2)(ClO4)](3+) and [(CoLCl)-Cl-3](+) revealed that the metal centres are surrounded by the four nitrogen atoms of the macrocycle and one monodentate ligand, adopting distorted square pyramidal geometries. In the [(CoLCl)-Cl-3](+) complex, the macrocycle adopts a folded arrangement with the nitrogen atom opposite to the pyridine at the axial position while in the [Cu(H2L2)(ClO4)](3+) complex, the macrocycle adopts a planar conformation with the three aminopropyl arms located at the same side of the macrocyclic plane.
Resumo:
Reaction of 1,3-diaryltriazenes (abbreviated in general as HL-R, where R stands for the para-substituent in the aryl fragment and H stands for the dissociable hydrogen atom, R = OCH3, CH3, H, Cl, NO2) with [Rh(PPh3)(2)(CO)Cl] in ethanol in the presence of NEt3 produces a series of tris-diaryltriazenide complexes of rhodium of type [Rh(L-R)(3)], where the triazenes are coordinated to rhodium as monoanionic, bidentate N,N-donors. Structure of the [Rh(L-OCH3)(3)] complex has been determined by X-ray crystallography. The complexes are diamagnetic, and show characteristic H-1 NMR signals and intense MLCT transitions in the visible region. They also fluoresce in the visible region under ambient condition while excited at around 400 nm. Cyclic voltammetry on these complexes shows a Rh(III)-Rh(IV) oxidation (within 0.84-1.67 V vs SCE), followed by an oxidation of the coordinated tri- and azene ligand (except the R = NO2 complex). An irreversible reduction of the coordinated triazene is also observed for all the complexes below -1.03 V vs SCE.
Resumo:
Three supramolecular complexes of Co(II) using SCN-/SeCN- in combination with 4,4'-dipyridyl-N,N'-dioxide (dpyo), i.e., {[Co(SCN)(2)(dpyo)(2)].(dpyo)}(n) ( 1), {[Co(SCN)(2)(dpyo)(H2O)(2)].(H2O)}(n) ( 2), {[Co(SeCN)(2)(dpyo)(H2O)(2)]center dot(H2O)}(n) ( 3), have been synthesized and characterized by single-crystal X-ray analysis. Complex 1 is a rare example of a dpyo bridged two-dimensional (2D) coordination polymer, and pi-stacked dpyo supramolecular rods are generated by the lattice dpyo, passing through the rhombic grid of stacked layers, resulting in a three-dimensional (3D) superstructure. Complexes 2 and 3 are isomorphous one-dimensional (1D) coordination polymers [-Co-dpyo-Co-] that undergo self-assembly leading to a bilayer architecture derived through an R-2(2)(8) H-bonding synthon between coordinated water and dpyo oxygen. A reinvestigation of coordination polymers [Mn(SCN)(2)(dpyo)( H2O)(MeOH)](n) ( 4) and {[Fe(SCN)(2)(dpyo)(H2O)(2)]center dot(H2O)}(n) ( 5) reported recently by our group [ Manna et al. Indian J. Chem. 2006, 45A, 1813] reveals brick wall topology rather than bilayer architecture is due to the decisive role of S center dot center dot center dot S/Se center dot center dot center dot Se interactions in determining the helical nature in 4 and 5 as compared to zigzag polymeric chains in 2 and 3, although the same R-2(2)(8) synthon is responsible for supramolecular assembly in these complexes.
Resumo:
Carbamoyl methyl pyrazole compound of palladium(II) chloride of the type [PdCl2L2] (where L = C5H7N2CH2CON(C4H9)(2), C5H7N2CH2CON((C4H9)-C-i)(2), C3H3N2CH2CON(C4H9)(2), or C3H3N2CH2CON((C4H9)-C-i)(2)) has been synthesized and characterized by IR and H-1 NMR spectroscopy. The structure of the compound [PdCl2{(C3H3N2CH2CONBu2}2)-Bu-i] has been determined by single crystal X-ray diffraction and shows that the ligands are bonded through the soft pyrazolyl nitrogen atom to the palladium(II) chloride in a trans disposition. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The synthesis of doubly thermoresponsive PPO-PMPC-PNIPAM triblock copolymer gelators by atom transfer radical polymerization using a PPO-based macroinitiator is described. Provided that the PPO block is sufficiently long, dynamic light scattering and differential scanning calorimetry studies confirm the presence of two separate thermal transitions corresponding to micellization and gelation, as expected. However, these ABC-type triblock copolymers proved to be rather inefficient gelators: free-standing gels at 37 degrees C required a triblock copolymer concentration of around 20 wt%. This gelator performance should be compared with copolymer concentrations of 6-7 wt% required for the PNIPAM-PMPC-PNIPAM triblock copolymers reported previously. Clearly, the separation of micellar self-assembly from gel network formation does not lead to enhanced gelator efficiencies, at least for this particular system. Nevertheless, there are some features of interest in the present study. In particular, close inspection of the viscosity vs temperature plot obtained for a PPO43-PMPC160-PNIPAM(81) triblock copolymer revealed a local minimum in viscosity. This is consistent with intramicelle collapse of the outer PNIPAM blocks prior to the development of the intermicelle hydrophobic interactions that are a prerequisite for macroscopic gelation.
Resumo:
Two octahedral complexes [Ni(HL1)(2)](ClO4)(2) (1) and [Ni(HL2)(2)](ClO4)(2) (2) and a square planar complex [Ni(HL3)]ClO4 (3) have been prepared, where [HL1 = 3-(2-amino-ethylimino)-butan-2-one oxime, HL2 = 3-(2-amino-propylimino)butan-2-one oxime] and H2L3 = 3-[2-(3-hydroxy-1-methyl-but-2-enylideneamino)-1-methyl-ethylimino]-buta n-2-one oxime. All the complexes have been characterized by elemental analyses, spectral studies and room temperature magnetic moment measurements. The molecular structures of all three compounds were elucidated on the basis of X-ray crystallography: complexes 1 and 2 are seen to be the met isomers. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Dinuclear trioxidic [{VOL}(2)mu-O] (1-4) complexes were synthesized from the reaction of [(VO)-O-IV(acac)(2)] with an equimolar amount of H2L [H2L is the general abbreviation of hydrazone ligands (H2L1-4) derived from the condensation of benzoyl hydrazine with either 2-hydroxyacetophenone or its para substituted derivatives] in acetone or CH2Cl2 or acetonitrile. These V2O3L2 complexes were also obtained from the reaction of VOSO4 with H2L in the presence of two equivalents sodium acetate in aqueous-methanolic (50% V/V) medium and also from the decomposition of [(VO)-O-IV(L)(bipy/phen)] complexes in CH2Cl2 Solution. Black monoclinic crystals of 2 and 4 with C2/c space group were obtained from the reaction of [(VO)-O-IV(acac)(2)], respectively, with H2L2 and H2L4 in acetone in which the respective ligands are bonded meridionally to vanadium in their fully deprotonated enol forms. The V-O bond lengths follow the order: V-O(oxo) < V-O(oxo-bridged) < V-O(phenolate) < V-O(enolate). Complexes (1-4) are diamagnetic exhibiting LMCT transition band near 380 nm in CH2Cl2 solution and they are electroactive displaying a quasi-reversible reduction peak in the 0.14-0.30 V versus SCE region. The and the reduction peak potential (E-p(c)) values show linear relationships with the Hammett constant (sigma) of the substituents in the hydrazone ligands. These dinuclear complexes are converted to the corresponding mononuclear cis dioxo complexes K(H2O)(+)[(VO2)-O-V(L)](-) (5-8) and mixed-ligand [(VO)-O-V(L)(hq)] complexes on reaction, respectively, with two equivalents KOH in methanol and two equivalents 8-hydroxyquinoline (Hhq) in CHCl3. Ascorbic acid reduces the dioxovanadium(V) complexes reversibly under aerobic condition. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Three copper(II) complexes, [CuL1], [CuL2] and [CuL3] where L-1, L-2 and L-3 are the tetradentate di-Schiff-base ligands prepared by the condensation of acetylacetone and appropriate diamines (e.g. 1,2-diaminoethane, 1,2-diaminopropane and 1,3-diaminopropane, respectively) in 2:1 ratios, have been prepared. These complexes act as host molecules and include a guest sodium ion by coordinating through the oxygen atoms to result in corresponding new trinuclear complexes, [(CuL1)(2)Na(ClO4)(H2O)][CuL1], [(CuL2)(2)Na(ClO4)(H2O)] (2) and [(CuL3)(2)Na(ClO4)(H2O)] (3) when crystallized from methanol solution containing sodium perchlorate. All three complexes have been characterized by single crystal X-ray crystallography. In all the complexes, the sodium cation has a six-coordinate distorted octahedral environment being bonded to four oxygen atoms from two Schiff-base complexes of Cu(II) in addition to a perchlorate anion and a water molecule. The copper atoms are four coordinate in a square planar environment being bonded to two oxygen atoms and two nitrogen atoms of the Schiff-base ligand. The variable temperature susceptibilities for complexes 1-3 were measured over the range 2-300 K. The isotropic Hamiltonian, H = g(1)beta HS1 + g(2)beta HS2 + J(12)S(1)S(2) + g(3)beta HS3 for complex 1 and H = g(1)beta HS1 + g2 beta HS2 +J(12)S(1)S(2) for complexes 2 and 3 has been used to interpret the magnetic data. The best fit parameters obtained are: g(1) = g(2) = 2.07(0), J = - 1.09(1) cm(-1) for complex 1, g(1) = g(2) = 2.06(0), J = -0.55(1) cm(-1) for complex 2 and g1 = g2 = 2.07(0).J = -0.80(1) cm(-1) for 3. Electrochemical studies displayed an irreversible Cu(II)/Cu(I) one-electron reduction process. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]center dot 2H(2)O (1) of mono-condensed tridentate Schiff base ligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the Nil, as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)(2)center dot 4H(2)O furnishing the complex [NiL(NCS)] (2) and with CuCl2 center dot 2H(2)O in the presence of NaN3 or NH4SCN producing [CuL(N-3)](2) (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)(2)center dot 6H(2)O and Cu(NO3)(2)center dot 3H(2)O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)(2)center dot 6H(2)O or Ni(NO3)(2)center dot 6H(2)O to yield [Ni(hap)(2)] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, Ni-II possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around Cu-II in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around Cu-II is square pyramidal. In both 5 and 6, the Cu-II atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
Three new linear trinuclear nickel(II) complexes, [Ni-3(salpen)(2)(OAc)(2)(H2O)(2)]center dot 4H(2)O (1) (OAc = acetate, CH3COO-), [Ni-3(salpen)(2)(OBz)(2)] (2) (OBz=benzoate, PhCOO-) and [Ni-3(salpen)(2)(OCn)(2)(CH3CN)(2)] (4) (OCn = cinnamate, PhCH=CHCOO-), H(2)salpen = tetradentate ligand, N,N'-bis(salicylidene)-1,3-pentanediamine have been synthesized and characterized structurally and magnetically. The choice of solvent for growing single crystal was made by inspecting the morphology of the initially obtained solids with the help of SEM study. The magnetic properties of a closely related complex, [Ni-3(salpen)(2)(OPh)(2)(EtOH)] (3) (OPh = phenyl acetate, PhCH2COO-) whose structure and solution properties have been reported recently, has also been studied here. The structural analyses reveal that both phenoxo and carboxylate bridging are present in all the complexes and the three Ni(II) atoms remain in linear disposition. Although the Schiff base ligand and the syn-syn bridging bidentate mode of the carboxylate group remain the same in complexes 1-4, the change of alkyl/aryl group of the carboxylates brings about systematic variations between six- and five-coordination in the geometry of the terminal Ni(II) centres of the trinuclear units. The steric demand as well as hydrophobic nature of the alkyl/aryl group of the carboxylate is found to play a crucial role in the tuning of the geometry. Variable-temperature (2-300 K) magnetic susceptibility measurements show that complexes 1-4 are antiferromagnetically coupled (J = -3.2(1), -4.6(1). -3.2(1) and -2.8(1) cm(-1) in 1-4, respectively). Calculations of the zero-field splitting parameter indicate that the values of D for complexes 1-4 are in the high range (D = +9.1(2), +14.2(2), +9.8(2) and +8.6(1) cm(-1) for 1-4, respectively). The highest D value of +14.2(2) and +9.8(2) cm(-1) for complexes 2 and 3, respectively, are consistent with the pentacoordinated geometry of the two terminal nickel(II) ions in 2 and one terminal nickel(II) ion in 3. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Anion directed, template syntheses of two dinuclear copper(II) complexes of mono-condensed Schiff base ligand Hdipn (4-[(3-aminopentylimino)-methyl]-benzene-1,3-diol) involving 2,4- dihydroxybenzaldehyde and 1,3-diaminopentane were realized in the presence of bridging azide and acetate anions. Both complexes, [Cu-2(dipn)(2)(N-3)(2)] (1) and [Cu-2(dip(n))(2)(OAc)(2)] (2) have been characterized by X-ray crystallography. The two mononuclear units are joined together by basal-apical, double end-on azido bridges in complex 1 and by basal-apical, double mono-atomic acetate oxygen-bridges in 2. Both complexes form rectangular grid-like supramolecular structures via H-bonds connecting the azide or acetate anion and the p-hydroxy group of 2,4- dihydroxybenzaldehyde. Variable-temperature (300-2 K) magnetic susceptibility measurements reveal that complex 1 has antiferromagnetic coupling (J = -2.10 cm (1)) through the azide bridge while 2 has intra-dimer ferromagnetic coupling through the acetate bridge and inter-dimer antiferromagnetic coupling through H-bonds (J = 2.85 cm (1), J' = -1.08 cm (1)). (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
The reaction of FcCOC1 (Fc = (C5H5) Fe(C5H4)) with benzimidazole or imidazole in 1: 1 ratio gives the ferrocenyl derivatives FcCO(benzim) (L1) or FcCO(im) (L2), respectively. Two molecules of L1 or L2 can replace two nitrile ligands in [Mo(eta(3)-C3H5)( CO)(2)(CH3CN)(2)Br] or [Mo(eta(3)-C5H5O)(CO)(2)(CH3CN)(2)Br] leading to the new trinuclear complexes [Mo(eta(3)-C3H5)(CO)(2)(L)(2)Br] (C1 for L = L1; C3 for L = L2) and [Mo(eta(3)-C5H5O)(CO)(2)(L)(2)Br] (C-2 for L = L1; C4 for L = L2) with L1 and L2 acting as N-monodentade ligands. L1, L2 and C2 were characterized by X-ray diffraction studies. [Mo(eta(3)-C5H5O)(CO) 2(L1)(2)Br] was shown to be a trinuclear species, with the two L1 molecules occupying one equatorial and one axial position in the coordination sphere of Mo(II). Cyclic voltammetric studies were performed for the two ligands L1 and L2, as well as for their molybdenum complexes, and kinetic and thermodynamic data for the corresponding redox processes obtained. In agreement with the nature of the frontier orbitals obtained from DFT calculations, L1 and L2 exhibit one oxidation process at the Fe(II) center, while C1, C3, and C4 display another oxidation wave at lower potentials, associated with the oxidation of Mo(II). (C) 2007 Elsevier B. V. All rights reserved.