148 resultados para Memory element
Resumo:
In this paper, we study the periodic oscillatory behavior of a class of bidirectional associative memory (BAM) networks with finite distributed delays. A set of criteria are proposed for determining global exponential periodicity of the proposed BAM networks, which assume neither differentiability nor monotonicity of the activation function of each neuron. In addition, our criteria are easily checkable. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Book review of 'The ethics of memory' by A. Margalit.
Resumo:
Background: As people age, language-processing ability changes. While several factors modify discourse comprehension ability in older adults, syntactic complexity of auditory discourse has received scant attention. This is despite the widely researched domain of syntactic processing of single sentences in older adults. Aims: The aims of this study were to investigate the ability of healthy older adults to understand stories that differed in syntactic complexity, and its relation to working memory. Methods & Procedures: A total of 51 healthy adults (divided into three age groups) took part. They listened to brief stories (syntactically simple and syntactically complex) and had to respond to false/true comprehension probes following each story. Working memory capacity (digit span, forward and backward) was also measured. Outcomes & Results: Differences were found in the ability of healthy older adults to understand simple and complex discourse. The complex discourse in particular was more sensitive in discerning age-related language patterns. Only the complex discourse task correlated moderately with age. There was no correlation between age and simple discourse. As far as working memory is concerned, moderate correlations were found between working memory and complex discourse. Education did not correlate with discourse, neither simple, nor complex. Conclusions: Older adults may be less efficient in forming syntactically complex representations and this may be influenced by limitations in working memory.
Resumo:
This book is a collection of articles devoted to the theory of linear operators in Hilbert spaces and its applications. The subjects covered range from the abstract theory of Toeplitz operators to the analysis of very specific differential operators arising in quantum mechanics, electromagnetism, and the theory of elasticity; the stability of numerical methods is also discussed. Many of the articles deal with spectral problems for not necessarily selfadjoint operators. Some of the articles are surveys outlining the current state of the subject and presenting open problems.
Resumo:
We study the complex formation of a peptide betaAbetaAKLVFF, previously developed by our group, with Abeta(1–42) in aqueous solution. Circular dichroism spectroscopy is used to probe the interactions between betaAbetaAKLVFF and Abeta(1–42), and to study the secondary structure of the species in solution. Thioflavin T fluorescence spectroscopy shows that the population of fibers is higher in betaAbetaAKLVFF/Abeta(1–42) mixtures compared to pure Abeta(1–42) solutions. TEM and cryo-TEM demonstrate that co-incubation of betaAbetaAKLVFF with Abeta(1–42) causes the formation of extended dense networks of branched fibrils, very different from the straight fibrils observed for Abeta(1–42) alone. Neurotoxicity assays show that although betaAbetaAKLVFF alters the fibrillization of Abeta(1–42), it does not decrease the neurotoxicity, which suggests that toxic oligomeric Abeta(1–42) species are still present in the betaAbetaAKLVFF/Abeta(1–42) mixtures. Our results show that our designed peptide binds to Abeta(1–42) and changes the amyloid fibril morphology. This is shown to not necessarily translate into reduced toxicity.
Resumo:
In recent years nonpolynomial finite element methods have received increasing attention for the efficient solution of wave problems. As with their close cousin the method of particular solutions, high efficiency comes from using solutions to the Helmholtz equation as basis functions. We present and analyze such a method for the scattering of two-dimensional scalar waves from a polygonal domain that achieves exponential convergence purely by increasing the number of basis functions in each element. Key ingredients are the use of basis functions that capture the singularities at corners and the representation of the scattered field towards infinity by a combination of fundamental solutions. The solution is obtained by minimizing a least-squares functional, which we discretize in such a way that a matrix least-squares problem is obtained. We give computable exponential bounds on the rate of convergence of the least-squares functional that are in very good agreement with the observed numerical convergence. Challenging numerical examples, including a nonconvex polygon with several corner singularities, and a cavity domain, are solved to around 10 digits of accuracy with a few seconds of CPU time. The examples are implemented concisely with MPSpack, a MATLAB toolbox for wave computations with nonpolynomial basis functions, developed by the authors. A code example is included.
Resumo:
We consider the classical coupled, combined-field integral equation formulations for time-harmonic acoustic scattering by a sound soft bounded obstacle. In recent work, we have proved lower and upper bounds on the $L^2$ condition numbers for these formulations, and also on the norms of the classical acoustic single- and double-layer potential operators. These bounds to some extent make explicit the dependence of condition numbers on the wave number $k$, the geometry of the scatterer, and the coupling parameter. For example, with the usual choice of coupling parameter they show that, while the condition number grows like $k^{1/3}$ as $k\to\infty$, when the scatterer is a circle or sphere, it can grow as fast as $k^{7/5}$ for a class of `trapping' obstacles. In this paper we prove further bounds, sharpening and extending our previous results. In particular we show that there exist trapping obstacles for which the condition numbers grow as fast as $\exp(\gamma k)$, for some $\gamma>0$, as $k\to\infty$ through some sequence. This result depends on exponential localisation bounds on Laplace eigenfunctions in an ellipse that we prove in the appendix. We also clarify the correct choice of coupling parameter in 2D for low $k$. In the second part of the paper we focus on the boundary element discretisation of these operators. We discuss the extent to which the bounds on the continuous operators are also satisfied by their discrete counterparts and, via numerical experiments, we provide supporting evidence for some of the theoretical results, both quantitative and asymptotic, indicating further which of the upper and lower bounds may be sharper.
Resumo:
We consider scattering of a time harmonic incident plane wave by a convex polygon with piecewise constant impedance boundary conditions. Standard finite or boundary element methods require the number of degrees of freedom to grow at least linearly with respect to the frequency of the incident wave in order to maintain accuracy. Extending earlier work by Chandler-Wilde and Langdon for the sound soft problem, we propose a novel Galerkin boundary element method, with the approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh with smaller elements closer to the corners of the polygon. Theoretical analysis and numerical results suggest that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency of the incident wave.
Resumo:
Background: The cognitive bases of language impairment in specific language impairment (SLI) and autism spectrum disorders (ASD) were investigated in a novel non-word comparison task which manipulated phonological short-term memory (PSTM) and speech perception, both implicated in poor non-word repetition. Aims: This study aimed to investigate the contributions of PSTM and speech perception in non-word processing and whether individuals with SLI and ASD plus language impairment (ALI) show similar or different patterns of deficit in these cognitive processes. Method & Procedures: Three groups of adolescents (aged 14–17 years), 14 with SLI, 16 with ALI, and 17 age and non-verbal IQ matched typically developing (TD) controls, made speeded discriminations between non-word pairs. Stimuli varied in PSTM load (two- or four-syllables) and speech perception load (mismatches on a word-initial or word-medial segment). Outcomes & Results: Reaction times showed effects of both non-word length and mismatch position and these factors interacted: four-syllable and word-initial mismatch stimuli resulted in the slowest decisions. Individuals with language impairment showed the same pattern of performance as those with typical development in the reaction time data. A marginal interaction between group and item length was driven by the SLI and ALI groups being less accurate with long items than short ones, a difference not found in the TD group. Conclusions & Implications: Non-word discrimination suggests that there are similarities and differences between adolescents with SLI and ALI and their TD peers. Reaction times appear to be affected by increasing PSTM and speech perception loads in a similar way. However, there was some, albeit weaker, evidence that adolescents with SLI and ALI are less accurate than TD individuals, with both showing an effect of PSTM load. This may indicate, at some level, the processing substrate supporting both PSTM and speech perception is intact in adolescents with SLI and ALI, but also in both there may be impaired access to PSTM resources.
Resumo:
There is intense interest in the studies related to the potential of phytochemical-rich foods to prevent age-related neurodegeneration and cognitive decline. Recent evidence has indicated that a group of plant-derived compounds known as flavonoids may exert particularly powerful actions on mammalian cognition and may reverse age-related declines in memory and learning. In particular, evidence suggests that foods rich in three specific flavonoid sub-groups, the flavanols, anthocyanins and/or flavanones, possess the greatest potential to act on the cognitive processes. This review will highlight the evidence for the actions of such flavonoids, found most commonly in fruits, such as apples, berries and citrus, on cognitive behaviour and the underlying cellular architecture. Although the precise mechanisms by which these flavonoids act within the brain remain unresolved, the present review focuses on their ability to protect vulnerable neurons and enhance the function of existing neuronal structures, two processes known to be influenced by flavonoids and also known to underpin neuro-cognitive function. Most notably, we discuss their selective interactions with protein kinase and lipid kinase signalling cascades (i.e. phosphoinositide-3 kinase/Akt and mitogen-activated protein kinase pathways), which regulate transcription factors and gene expression involved in both synaptic plasticity and cerebrovascular blood flow. Overall, the review attempts to provide an initial insight into the potential impact of regular flavonoid-rich fruit consumption on normal or abnormal deteriorations in cognitive performance.
Resumo:
The use of n-tuple or weightless neural networks as pattern recognition devices is well known (Aleksander and Stonham, 1979). They have some significant advantages over the more common and biologically plausible networks, such as multi-layer perceptrons; for example, n-tuple networks have been used for a variety of tasks, the most popular being real-time pattern recognition, and they can be implemented easily in hardware as they use standard random access memories. In operation, a series of images of an object are shown to the network, each being processed suitably and effectively stored in a memory called a discriminator. Then, when another image is shown to the system, it is processed in a similar manner and the system reports whether it recognises the image; is the image sufficiently similar to one already taught? If the system is to be able to recognise and discriminate between m-objects, then it must contain m-discriminators. This can require a great deal of memory. This paper describes various ways in which memory requirements can be reduced, including a novel method for multiple discriminator n-tuple networks used for pattern recognition. By using this method, the memory normally required to handle m-objects can be used to recognise and discriminate between 2^m — 2 objects.
Resumo:
A distributed Lagrangian moving-mesh finite element method is applied to problems involving changes of phase. The algorithm uses a distributed conservation principle to determine nodal mesh velocities, which are then used to move the nodes. The nodal values are obtained from an ALE (Arbitrary Lagrangian-Eulerian) equation, which represents a generalization of the original algorithm presented in Applied Numerical Mathematics, 54:450--469 (2005). Having described the details of the generalized algorithm it is validated on two test cases from the original paper and is then applied to one-phase and, for the first time, two-phase Stefan problems in one and two space dimensions, paying particular attention to the implementation of the interface boundary conditions. Results are presented to demonstrate the accuracy and the effectiveness of the method, including comparisons against analytical solutions where available.