113 resultados para Meal
Resumo:
In view of the increasing interest in home-grown legumes as components of diets for non-ruminant livestock and in an attempt to reduce the reliance on imported soya bean meal (SBM), two experiments were conducted to evaluate samples of peas and faba beans for their standardised ileal digestibility (SID) of amino acids determined with young broiler chicks. Experiment 1 evaluated six faba bean and seven pea cultivars and Experiment 2 evaluated two faba bean and three pea cultivars as well as a sample of soya bean meal provided as a reference material. Peas and beans were added at 750g/kg as the only source of protein/amino acids in a semi-synthetic diet containing the inert marker titanium dioxide; SBM was added, in a control diet, at 500g/kg. Each diet was fed to six replicates of a cage containing two Ross-type broilers for 96h at which point birds were culled allowing removal of ileal digesta. Chemical analyses allowed the calculation of the coefficient of SID of amino acids. There were no differences between samples of the same pulse species (P>0.05) but peas had higher values (P<0.05), similar to SBM, than beans. Trypsin inhibitor content (expressed as g trypsin inhibitor units/mg sample) of all pea samples was low and in the range 0.83–1.77mg/kg. There was relatively little variation in bean tannin content and composition amongst the coloured-flowered varieties; however, the white-flowered cultivar had no tannins. There was no correlation between tannin content and coefficient of SID. The content of SID of amino acids (g/kg legume) was higher in SBM when compared with peas and beans by virtue of having higher total concentrations.
Resumo:
Epidemiological studies indicate that diets rich in fruits and vegetables (F&V) are protective against cardiovascular diseases (CVD). Pureed F&V products retain many beneficial components, including flavonoids, carotenoids, vitamin C and dietary fibres. This study aimed to establish the physiological effects of acute ingestion of F&V puree-based drink (FVPD) on vasodilation, antioxidant status, phytochemical bioavailability and other CVD risk factors. 24 Subjects, aged 30-70 years, completed the randomised, single-blind, controlled, crossover test meal study. Subjects consumed 400 ml FVPD, or fruit-flavoured sugar-matched control, after following a low-flavonoid diet for 5 days. Blood and urine samples were collected throughout the study day and vascular reactivity was assessed at 90-minute intervals using laser Doppler iontophoresis (LDI). FVPD significantly increased plasma vitamin C (P=0.002) and total nitrate/nitrite (P=0.001) concentrations. There was a near significant time by treatment effect on ex vivo LDL oxidation (P=0.068), with a longer lag phase after consuming FVPD. During the 6 hours after juice consumption the antioxidant capacity of plasma increased significantly (P=0.003) and there was a simultaneous increase in plasma and urinary phenolic metabolites (P<0.05). There were significantly lower glucose and insulin peaks after ingestion of FVPD compared with control (P=0.019 and P=0.003) and a trend towards increased endothelium-dependent vasodilation following FVPD consumption (P=0.061). Overall, FVPD consumption significantly increased plasma vitamin C and total nitrate/nitrite concentrations, with a trend towards increased endothelium-dependent vasodilation. Pureed F&V products are useful vehicles for increasing micronutrient status, plasma antioxidant capacity and in vivo NO generation, which may contribute to CVD risk reduction.
Resumo:
Objective: An exaggerated postprandial triacylglycerol (TAG) response is an important determinant of cardiovascular disease risk. With increased recognition of the role of leptin in systemic macronutrient metabolism, we used a candidate gene approach to examine the impact of the common leptin receptor (LEPR) Gln223Arg polymorphism (rs1137101) on postprandial lipaemia. Methods and results: Healthy adults (n ¼ 251) underwent a sequential meal postprandial investigation, in which blood samples were taken at regular intervals after a test breakfast (t ¼ 0) and lunch (t ¼ 330 min). Fasting total- and low-density lipoprotein cholesterol were 9% lower in the ArgArg than GlnArg group (P < 0.04), whereas fasting TAG was 27% lower in the ArgArg than GlnGln group (P < 0.02). The magnitude of the postprandial TAG response was also significantly lower in the ArgArg compared with the GlnArg and GlnGln genotypes, with a 26% lower area under the curve (AUC) and incremental AUC in the ArgArg individuals (P � 0.023). Genotype*gender interactions were evident for fasting and postprandial TAG responses (P < 0.05), with the genotype effect only evident in males. Regression analysis indicated that the LEPR genotype and genotype*gender interactions were independent predictors of the TAG AUC, accounting for 6.3% of the variance. Our main findings were replicated in the independent LIPGENE-Cordoba postprandial cohort of metabolic syndrome subjects (n ¼ 75), with a 52% lower TAG AUC in the ArgArg than GlnGln male subjects (P ¼ 0.018). Conclusion: We report for the first time that the common LEPR Gln223Arg genotype is an important predictor of postprandial TAG in males. The mechanistic basis of these associations remains to be determined.
Resumo:
Scope: Our aim was to determine the effects of chronic dietary fat manipulation on postprandial lipaemia according to apolipoprotein (APO)E genotype. Methods and results:Men (mean age 53 (SD 9) years), prospectively recruited for the APOE genotype (n = 12 E3/E3, n = 11 E3/E4), were assigned to a low fat (LF), high fat, high-saturated fat (HSF), and HSF diet with 3.45 g/day docosahexaenoic acid (HSF-DHA), each for an 8-week period in the same order. At the end of each dietary period, a postprandial assessment was performed using a test meal with a macronutrient profile representative of that dietary intervention. A variable postprandial plasma triacylglycerol (TAG) response according to APOE genotype was evident, with a greater sensitivity to the TAG-lowering effects of DHA in APOE4 carriers (p ≤ 0.005). There was a lack of an independent genotype effect on any of the lipid measures. In the groups combined, dietary fat manipulation had a significant impact on lipids in plasma and Svedberg flotation rate (Sf) 60–400 TAG-rich lipoprotein fraction, with lower responses following the HSF-DHA than HSF intervention (p < 0.05). Conclusion: Although a modest impact of APOE genotype was observed on the plasma TAG profile, dietary fat manipulation emerged as a greater modulator of the postprandial lipid response in normolipidaemic men.
Resumo:
Purpose of review: Vascular function is recognized as an early and integrative marker of cardiovascular disease. While there is consistent evidence that the quantity of dietary fat has significant effects on vascular function, the differential effects of individual fatty acids is less clear. This review summarizes recent evidence from randomly controlled dietary studies on the impact of dietary fatty acids on vascular function, as determined by flow-mediated dilatation (FMD). Recent findings: Critical appraisal is given to five intervention studies (one acute, four chronic) which examined the impact of long-chain n-3 polyunsaturated fatty acid [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] on FMD. In the acute setting, a high dose of long-chain n-3 polyunsaturated fatty acid (4.9 g per 70 kg man) improved postprandial FMD significantly, compared with a saturated fatty acid-rich meal in healthy individuals. In longer-term studies, there was limited evidence for a significant effect of EPA/DHA on FMD in diseased groups. Summary: The strongest evidence for the benefits of EPA/DHA on vascular function is in the postprandial state. More evidence from randomly controlled intervention trials with foods will be required to substantiate the long-term effects of EPA/DHA, to inform public health and clinical recommendations.
Resumo:
Abstract Objective: Studies have started to question whether a specific component or combinations of metabolic syndrome (MetS) components may be more important in relation to cardiovascular disease risk. Our aim was to examine the impact of the presence of raised fasting glucose as a MetS component on postprandial lipaemia. Methods: Men classified with the MetS underwent a sequential test meal investigation, in which blood samples were taken at regular intervals after a test breakfast (t=0 min) and lunch (t=330 min). Lipids, glucose and insulin were measured in the fasting and postprandial samples. Results: MetS subjects with 3 or 4 components were subdivided into those without (n=34) and with (n=23) fasting hyperglycaemia (≥ 5.6 mmol/l), irrespective of the combination of components. Fasting lipids and insulin were similar in the two groups, with glucose significantly higher in the men with glucose as a MetS component (P<0.001). Following the test meals, there was a higher maximum concentration (maxC), area under the curve (AUC) and incremental AUC (P≤0.016) for the postprandial triacylglycerol (TAG) response in men with fasting hyperglycaemia. Greater glucose AUC (P<0.001) and insulin maxC (P=0.010) was also observed in these individuals after the test meals. Multivariate regression analysis revealed fasting glucose to be an important predictor of the postprandial TAG and glucose response. Conclusion: Our data analysis has revealed a greater impairment of postprandial TAG than glucose response in MetS subjects with raised fasting glucose. The worsening of postprandial lipaemic control may contribute to the greater CVD risk reported in individuals with MetS component combinations which include hyperglycaemia.
Resumo:
Objectives: Investigate the impact of the provision of ONS on protein and energy intake from food and ability to meet protein and calorie requirements in people with dementia. Design: After consent by proxy was obtained, participants took part in a cross over study comparing oral intake on an intervention day to an adjacent control day. Setting: The study occurred in Nursing homes and hspitalised settings. Participants: Older adults with dementia over the age of 65 were recruited. 26 participants (aged 83.9+/-8.4 years, MMSE 13.08+/-8.13) took part. Intervention (if any): On the intervention day nutritional supplement drinks were provided three times. Each drink provided 283.3+/-41.8 Kcal of energy and 13.8+/-4.7g of protein. Supplements were removed approximately 1 hour before meals were served and weighed waste (g) was obtained. Measurements: Intake of food consumed was determined on intervention and control days using the quartile method (none, quarter, half, three quarters, all) for each meal component. Results: More people achieved their energy and protein requirements with the supplement drink intervention with no sufficient impact on habitual food consumption. Conclusion: Findings from these 26 participants with dementia indicate that supplement drinks may be beneficial in reducing the prevalence of malnutrition within teh group as more people meet their nutritional requirements. As the provision of supplement drinks is also demonstrated to have an additive effect to consumption of habitual foods, these can be used alongside other measures to also improve oral intake.
Resumo:
Resistant starch (RS) has been shown to beneficially affect insulin sensitivity in healthy individuals and those with metabolic syndrome, but its effects on human type 2 diabetes (T2DM) are unknown. This study aimed to determine the effects of increased RS consumption on insulin sensitivity and glucose control and changes in postprandial metabolites and body fat in T2DM. Seventeen individuals with well-controlled T2DM (HbA1c 46.6±2 mmol/mol) consumed, in a random order, either 40 g of type 2 RS (HAM-RS2) or a placebo, daily for 12 weeks with a 12-week washout period in between. At the end of each intervention period, participants attended for three metabolic investigations: a two-step euglycemic–hyperinsulinemic clamp combined with an infusion of [6,6-2H2] glucose, a meal tolerance test (MTT) with arterio-venous sampling across the forearm, and whole-body imaging. HAM-RS2 resulted in significantly lower postprandial glucose concentrations (P=0.045) and a trend for greater glucose uptake across the forearm muscle (P=0.077); however, there was no effect of HAM-RS2 on hepatic or peripheral insulin sensitivity, or on HbA1c. Fasting non-esterified fatty acid (NEFA) concentrations were significantly lower (P=0.004) and NEFA suppression was greater during the clamp with HAM-RS2 (P=0.001). Fasting triglyceride (TG) concentrations and soleus intramuscular TG concentrations were significantly higher following the consumption of HAM-RS2 (P=0.039 and P=0.027 respectively). Although fasting GLP1 concentrations were significantly lower following HAM-RS2 consumption (P=0.049), postprandial GLP1 excursions during the MTT were significantly greater (P=0.009). HAM-RS2 did not improve tissue insulin sensitivity in well-controlled T2DM, but demonstrated beneficial effects on meal handling, possibly due to higher postprandial GLP1.
Resumo:
Objective To investigate the effect of nutrient stimulation of gut hormones by oligofructose supplementation on appetite, energy intake (EI), body weight (BW) and adiposity in overweight and obese volunteers. Methods In a parallel, single-blind and placebo-controlled study, 22 healthy overweight and obese volunteers were randomly allocated to receive 30 g day−1 oligofructose or cellulose for 6 weeks following a 2-week run-in. Subjective appetite and side effect scores, breath hydrogen, serum short chain fatty acids (SCFAs), plasma gut hormones, glucose and insulin concentrations, EI, BW and adiposity were quantified at baseline and post-supplementation. Results Oligofructose increased breath hydrogen (P < 0.0001), late acetate concentrations (P = 0.024), tended to increase total area under the curve (tAUC)420mins peptide YY (PYY) (P = 0.056) and reduced tAUC450mins hunger (P = 0.034) and motivation to eat (P = 0.013) when compared with cellulose. However, there was no significant difference between the groups in other parameters although within group analyses showed an increase in glucagon-like peptide 1 (GLP-1) (P = 0.006) in the cellulose group and a decrease in EI during ad libitum meal in both groups. Conclusions Oligofructose increased plasma PYY concentrations and suppressed appetite, while cellulose increased GLP-1 concentrations. EI decreased in both groups. However, these positive effects did not translate into changes in BW or adiposity.
Resumo:
Infection with Eimeria spp. (coccidia) can be devastating in goats, particularly for young, recently-weaned kids, resulting in diarrhea, dehydration, and even death. Feeding dried sericea lespedeza [SL; Lespedeza cuneata (Dum.-Cours.) G. Don.] to young goats has been reported to reduce the effects of internal parasites, including gastrointestinal nematodes (GIN) but there have been no reports of the effects of feeding this forage on Eimeria spp. in goats. Two confinement feeding experiments were completed on recently-weaned intact bucks (24 Kiko-cross, Exp. 1; 20 Spanish, Exp. 2) to determine effects of SL pellets on an established infection of GIN and coccidia. The bucks were assigned to 1 of 2 (Exp. 1) or 3 (Exp. 2) treatment groups based upon the number of Eimeria spp. oocysts per gram (OPG) of feces. In Exp. 1, the kids were fed 1 of 2 pelleted rations ad libitum; 90% SL leaf meal + 10% of a liquid molasses/lignin binder mix and a commercial pellet with 12% crude protein (CP) and 24% acid detergent fiber (n = 12/treatment group, 2 animals/pen). For Exp. 2, treatment groups were fed 1) 90% SL leaf meal pellets from leaves stored 3 years (n = 7), 2) 90% SL pellets from leaf meal stored less than 6 months, (n = 7), and the commercial pellets (n = 6) ad libitum. For both trials, fecal and blood samples were taken from individual animals every 7 days for 28 days to determine OPG and GIN eggs per gram (EPG) and packed cell volume (PCV), respectively. In Exp. 2, feces were scored for consistency (1 = solid pellets, 5 = slurry) as an indicator of coccidiosis. In Exp. 1, EPG (P < 0.001) and OPG (P < 0.01) were reduced by 78.7 and 96.9%, respectively, 7 days after initiation of feeding in goats on the SL pellet diet compared with animals fed the control pellets. The OPG and EPG remained lower in treatment than control animals until the end of the trial. In Exp. 2, goats fed new and old SL leaf meal pellets had 66.2 and 79.2% lower (P < 0.05) EPG and 92.2 and 91.2% lower (P < 0.05) OPG, respectively, than control animals within 7 days, and these differences were maintained or increased throughout the trial. After 4 weeks of pellet feeding in Exp. 2, fecal scores were lower (P < 0.01) in both SL-fed groups compared with control animals, indicating fewer signs of coccidiosis. There was no effect of diet on PCV values throughout either experiment. Dried, pelleted SL has excellent potential as a natural anti-coccidial feed for weaned goats.
Resumo:
Postprandial glucose, together with related hyperinsulinemia and lipidaemia, has been implicated in the development of chronic metabolic diseases like obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). In this review, available evidence is discussed on postprandial glucose in relation to body weight control, the development of oxidative stress, T2DM, and CVD and in maintaining optimal exercise and cognitive performance. There is mechanistic evidence linking postprandial glycaemia or glycaemic variability to the development of these conditions or in the impairment in cognitive and exercise performance. Nevertheless, postprandial glycaemia is interrelated with many other (risk) factors as well as to fasting glucose. In many studies, meal-related glycaemic response is not sufficiently characterized, or the methodology with respect to the description of food or meal composition, or the duration of the measurement of postprandial glycaemia is limited. It is evident that more randomized controlled dietary intervention trials using effective low vs. high glucose response diets are necessary in order to draw more definite conclusions on the role of postprandial glycaemia in relation to health and disease. Also of importance is the evaluation of the potential role of the time course of postprandial glycaemia.
Resumo:
Background: We have previously demonstrated that carrying the apolipoprotein (apo) E epsilon 4 (E4+) genotype disrupts omega-3 fatty acids (n − 3 PUFA) metabolism. Here we hypothesise that the postprandial clearance of n − 3 PUFA from the circulation is faster in E4+ compared to non-carriers (E4−). The objective of the study was to investigate the fasted and postprandial fatty acid (FA) profile of triacylglycerol-rich lipoprotein (TRL) fractions: Sf >400 (predominately chylomicron CM), Sf 60 − 400 (VLDL1), and Sf 20 − 60 (VLDL2) according to APOE genotype. Methods: Postprandial TRL fractions were obtained in 11 E4+ (ε3/ε4) and 12 E4− (ε3/ε3) male from the SATgenε study following high saturated fat diet + 3.45 g/d of docosahexaenoic acid (DHA) for 8-wk. Blood samples were taken at fasting and 5-h after consuming a test-meal representative of the dietary intervention. FA were characterized by gas chromatography. Results: At fasting, there was a 2-fold higher ratio of eicosapentaenoic acid (EPA) to arachidonic acid (P = 0.046) as well as a trend towards higher relative% of EPA (P=0.063) in theSf >400 fraction of E4+. Total n − 3 PUFA in the Sf 60 − 400 and Sf 20 − 60 fractions were not APOE genotype dependant. At 5 h, there was a trend towards a time × genotype interaction (P=0.081) for EPA in theSf >400 fraction. When sub-groups were form based on the level of EPA at baseline within the Sf >400 fraction, postprandial EPA (%) was significantly reduced only in the high-EPA group. EPA at baseline significantly predicted the postprandial response in EPA only in E4+ subjects (R2 = 0.816). Conclusion: Despite the DHA supplement contain very low levels of EPA, E4+ subjects with high EPA at fasting potentially have disrupted postprandial n − 3 PUFA metabolism after receiving a high-dose of DHA. Trial registration: Registered at clinicaltrials.gov/show/NCT01544855.
Resumo:
BACKGROUND:Apolioprotein E (APOE) genotype is reported to influence a person's fasting lipid profile and potentially the response to dietary fat manipulation. The impact of APOE genotype on the responsiveness to meals of varying fat composition is unknown. OBJECTIVE:We examined the effect of meals containing 50 g of fat rich in saturated fatty acids (SFAs), unsaturated fatty acids (UNSATs), or SFAs with fish oil (SFA-FO) on postprandial lipemia. METHOD:A randomized, controlled, test meal study was performed in men recruited according to the APOE genotype (n = 10 APOE3/3, n = 11 APOE3/E4). RESULTS:For the serum apoE response (meal × genotype interaction P = 0.038), concentrations were on average 8% lower after the UNSAT than the SFA-FO meal in APOE4 carriers (P = 0.015) only. In the genotype groups combined, there was a delay in the time to reach maximum triacylglycerol (TG) concentration (mean ± SEM: 313 ± 25 vs. 266 ± 27 min) and higher maximum nonesterified fatty acid (0.73 ± 0.05 vs. 0.60 ± 0.03 mmol/L) and glucose (7.92 ± 0.22 vs. 7.25 ± 0.22 mmol/L) concentrations after the SFA than the UNSAT meal, respectively (P ≤ 0.05). In the Svedberg flotation rate 60-400 TG-rich lipoprotein fraction, meal × genotype interactions were observed for incremental area under the curve (IAUC) for the TG (P = 0.038) and apoE (P = 0.016) responses with a 58% lower apoE IAUC after the UNSAT than the SFA meal (P = 0.017) in the E4 carriers. CONCLUSIONS:Our data indicate that APOE genotype had a modest impact on the postprandial response to meals of varying fat composition in normolipidemic men. The physiologic importance of greater apoE concentrations after the SFA-rich meals in APOE4 carriers may reflect an impact on TG-rich lipoprotein clearance from the circulation. This trial was registered at clinicaltrials.gov as NCT01522482.
Resumo:
BACKGROUND: Neural responses to rewarding food cues are significantly different in the fed vs. fasted (>8 h food-deprived) state. However, the effect of eating to satiety after a shorter (more natural) intermeal interval on neural responses to both rewarding and aversive cues has not been examined. OBJECTIVE: With the use of a novel functional magnetic resonance imaging (fMRI) task, we investigated the effect of satiation on neural responses to both rewarding and aversive food tastes and pictures. DESIGN: Sixteen healthy participants (8 men, 8 women) were scanned on 2 separate test days, before and after eating a meal to satiation or after not eating for 4 h (satiated vs. premeal). fMRI blood oxygen level-dependent (BOLD) signals to the sight and/or taste of the stimuli were recorded. RESULTS: A whole-brain cluster-corrected analysis (P < 0.05) showed that satiation attenuated the BOLD response to both stimulus types in the ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex, nucleus accumbens, hypothalamus, and insula but increased BOLD activity in the dorsolateral prefrontal cortex (dlPFC; local maxima corrected to P ≤ 0.001). A psychophysiological interaction analysis showed that the vmPFC was more highly connected to the dlPFC when individuals were exposed to food stimuli when satiated than when not satiated. CONCLUSIONS: These results suggest that natural satiation attenuates activity in reward-related brain regions and increases activity in the dlPFC, which may reflect a "top down" cognitive influence on satiation. This trial was registered at clinicaltrials.gov as NCT02298049.
Resumo:
Abstract BACKGROUND: Cinnamon has been shown to delay gastric emptying of a high-carbohydrate meal and reduce postprandial glycemia in healthy adults. However, it is dietary fat which is implicated in the etiology and is associated with obesity, type 2 diabetes and cardiovascular disease. We aimed to determine the effect of 3 g cinnamon (Cinnamomum zeylanicum) on GE, postprandial lipemic and glycemic responses, oxidative stress, arterial stiffness, as well as appetite sensations and subsequent food intake following a high-fat meal. METHODS: A single-blind randomized crossover study assessed nine healthy, young subjects. GE rate of a high-fat meal supplemented with 3 g cinnamon or placebo was determined using the 13C octanoic acid breath test. Breath, blood samples and subjective appetite ratings were collected in the fasted and during the 360 min postprandial period, followed by an ad libitum buffet meal. Gastric emptying and 1-day fatty acid intake relationships were also examined. RESULTS: Cinnamon did not change gastric emptying parameters, postprandial triacylglycerol or glucose concentrations, oxidative stress, arterial function or appetite (p < 0.05). Strong relationships were evident (p < 0.05) between GE Thalf and 1-day palmitoleic acid (r = -0.78), eiconsenoic acid (r = -0.84) and total omega-3 intake (r = -0.72). The ingestion of 3 g cinnamon had no effect on GE, arterial stiffness and oxidative stress following a HF meal. CONCLUSIONS: 3 g cinnamon did not alter the postprandial response to a high-fat test meal. We find no evidence to support the use of 3 g cinnamon supplementation for the prevention or treatment of metabolic disease. Dietary fatty acid intake requires consideration in future gastrointestinal studies.