97 resultados para Lactobacillus-acidophilus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background—Probiotics are extensively used to promote gastrointestinal health and emerging evidence suggests that their beneficial properties can extend beyond the local environment of the gut. Here, we determined whether oral probiotic administration can alter the progression of post-infarction heart failure. Methods and Results—Rats were subjected to six weeks of sustained coronary artery occlusion and administered the probiotic Lactobacillus rhamnosus GR-1 or placebo in the drinking water ad libitum. Culture and 16s rRNA sequencing showed no evidence of GR-1 colonization or a significant shift in the composition of the cecal microbiome. However, animals administered GR-1 exhibited a significant attenuation of left ventricular hypertrophy based on tissue weight assessment as well as gene expression of atrial natriuretic peptide. Moreover, these animals demonstrated improved hemodynamic parameters reflecting both improved systolic and diastolic left ventricular function. Serial echocardiography revealed significantly improved left ventricular parameters throughout the six week follow-up period including a marked preservation of left ventricular ejection fraction as well as fractional shortening. Beneficial effects of GR-1 were still evident in those animals in which GR-1 was withdrawn at four weeks suggesting persistence of the GR-1 effects following cessation of therapy. Investigation of mechanisms showed a significant increase in the leptin to adiponectin plasma concentration ratio in rats subjected to coronary ligation which was abrogated by GR-1. Metabonomic analysis showed differences between sham control and coronary artery ligated hearts particularly with respect to preservation of myocardial taurine levels. Conclusions—The study suggests that probiotics offer promise as a potential therapy for the attenuation of heart failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The animal gastrointestinal tract houses a large microbial community, the gut microbiota, that confers many benefits to its host, such as protection from pathogens and provision of essential metabolites. Metagenomic approaches have defined the chicken fecal microbiota in other studies, but here, we wished to assess the correlation between the metagenome and the bacterial proteome in order to better understand the healthy chicken gut microbiota. Here, we performed high-throughput sequencing of 16S rRNA gene amplicons and metaproteomics analysis of fecal samples to determine microbial gut composition and protein expression. 16 rRNA gene sequencing analysis identified Clostridiales, Bacteroidaceae, and Lactobacillaceae species as the most abundant species in the gut. For metaproteomics analysis, peptides were generated by using the Fasp method and subsequently fractionated by strong anion exchanges. Metaproteomics analysis identified 3,673 proteins. Among the most frequently identified proteins, 380 proteins belonged to Lactobacillus spp., 155 belonged to Clostridium spp., and 66 belonged to Streptococcus spp. The most frequently identified proteins were heat shock chaperones, including 349 GroEL proteins, from many bacterial species, whereas the most abundant enzymes were pyruvate kinases, as judged by the number of peptides identified per protein (spectral counting). Gene ontology and KEGG pathway analyses revealed the functions and locations of the identified proteins. The findings of both metaproteomics and 16S rRNA sequencing analyses are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer cachexia is a multifactorial syndrome that includes muscle wasting and inflammation. As gut microbes influence host immunity and metabolism, we investigated the role of the gut microbiota in the therapeutic management of cancer and associated cachexia. A community-wide analysis of the caecal microbiome in two mouse models of cancer cachexia (acute leukaemia or subcutaneous transplantation of colon cancer cells) identified common microbial signatures, including decreased Lactobacillus spp. and increased Enterobacteriaceae and Parabacteroides goldsteinii/ASF 519. Building on this information, we administered a synbiotic containing inulin-type fructans and live Lactobacillus reuteri 100-23 to leukaemic mice. This treatment restored the Lactobacillus population and reduced the Enterobacteriaceae levels. It also reduced hepatic cancer cell proliferation, muscle wasting and morbidity, and prolonged survival. Administration of the synbiotic was associated with restoration of the expression of antimicrobial proteins controlling intestinal barrier function and gut immunity markers, but did not impact the portal metabolomics imprinting of energy demand. In summary, this study provided evidence that the development of cancer outside the gut can impact intestinal homeostasis and the gut microbial ecosystem and that a synbiotic intervention, by targeting some alterations of the gut microbiota, confers benefits to the host, prolonging survival and reducing cancer proliferation and cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of dietary intervention in the elderly in order to beneficially modulate their gut microbiota has not been extensively studied. The influence of two probiotics (Bifidobacterium longum and Lactobacillus fermentum) and two prebiotics [isomaltooligosaccharides (IMO) and short-chain fructooligosaccharides (FOS)], individually and in synbiotic combinations (B. longum with IMO, L. fermentum with FOS) on the gut microbiota of elderly individuals was investigated using faecal batch cultures and three-stage continuous culture systems. Population changes of major bacterial groups were enumerated using fluorescent in situ hybridisation (FISH). B. longum and IMO alone significantly increased the Bifidobacterium count after 5 and 10 h of fermentation and their synbiotic combination significantly decreased the Bacteroides count after 5 h of fermentation. L. fermentum and FOS alone significantly increased the Bifidobacterium count after 10 h and 5, 10 and 24 h of fermentation respectively. B. longum with IMO as well as B. longum and IMO alone significantly increased acetic acid concentration during the fermentation in batch cultures. In the three-stage continuous culture systems, both synbiotic combinations increased the Bifidobacterium and Lactobacillus count in the third vessel representing the distal colon. In addition, the synbiotic combination of L. fermentum with scFOS resulted in a significant increase in the concentration of acetic acid. The results show that the elderly gut microbiota can be modulated in vitro with the appropriate pro-, pre- and synbiotics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a novel but simple enteric coated sphere formulation containing probiotic bacteria (Lactobacillus casei). Oral delivery of live bacterial cells (LBC) requires live cells to survive firstly manufacturing processes and secondly GI microbicidal defenses including gastric acid. We incorporated live L. casei directly in the granulation liquid, followed by granulation, extrusion, spheronization, drying and spray coating to produce dried live probiotic spheres. A blend of MCC, calcium-crosslinked alginate, and lactose was developed that gave improved live cell survival during manufacturing, and gave excellent protection from gastric acid plus rapid release in intestinal conditions. No significant loss of viability was observed in all steps except drying, which resulted in approximately 1 log loss of viable cells. Eudragit coating was used to protect dried live cells from acid, and microcrystalline cellulose (MCC) was combined with sodium alginate to achieve efficient sphere disintegration leading to rapid and complete bacterial cell release in intestinal conditions. Viability and release of L. casei was evaluated in vitro in simulated GI conditions. Uncoated spheres gave partial acid protection, but enteric coated spheres effectively protected dried probiotic LBC from acid for 2 h, and subsequently released all viable cells within 1h of transfer into simulated intestinal fluid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to investigate the effect of probiotic immobilization onto wheat grains, both wet and freeze dried, on the adhesion properties of the probiotic cells and make comparisons with wet and freeze dried free cells. Lactobacillus casei ATCC 393 and Lactobacillus plantarum NCIMB 8826 were used as model probiotic strains. The results showed satisfactory adhesion ability of free cells to a monolayer of Caco-2 cells (> 1000 CFU/100 Caco-2 cells for wet cells). Cell immobilization resulted in a significant decrease in adhesion, for both wet and freeze dried formulations, most likely because immobilized cells did not have direct access to the Caco-2 cells, but it still remained in adequate levels (> 100 CFU/100 Caco-2 cells for wet cells). No clear correlation could be observed between cell adhesion and the hydrophobicity of the bacterial cells, measured by the hexadecane adhesion assay. Most notably, immobilization enhanced the monolayer integrity of Caco-2 cells, demonstrated by a more than 2-fold increase in transepithelial electrical resistance (TEER) compared to free cells. SEM micrographs ascertained the adhesion of both immobilized and free cells to the brush border microvilli. Finally, the impact of the food matrix on the adhesion properties of probiotic bacteria and on the design of novel functional products is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matrix-assisted laser desorption/ionisation (MALDI) coupled with time-of-flight (TOF) mass spectrometry (MS) is a powerful tool for the analysis of biological samples, and nanoflow high-performance liquid chromatography (nanoHPLC) is a useful separation technique for the analysis of complex proteomics samples. The off-line combination of MALDI and nanoHPLC has been extensively investigated and straightforward techniques have been developed, focussing particularly on automated MALDI sample preparation that yields sensitive and reproducible spectra. Normally conventional solid MALDI matrices such as α-cyano-4-hydroxycinnamic acid (CHCA) are used for sample preparation. However, they have limited usefulness in quantitative measurements and automated data acquisition because of the formation of heterogeneous crystals, resulting in highly variable ion yields and desorption/ ionization characteristics. Glycerol-based liquid support matrices (LSM) have been proposed as an alternative to the traditional solid matrices as they provide increased shot-to-shot reproducibility, leading to prolonged and stable ion signals and therefore better results. This chapter focuses on the integration of the liquid LSM MALDI matrices into the LC-MALDI MS/MS approach in identifying complex and large proteomes. The interface between LC and MALDI consists of a robotic spotter, which fractionates the eluent from the LC column into nanoliter volumes, and co-spots simultaneously the liquid matrix with the eluent fractions onto a MALDI target plate via sheath flow. The efficiency of this method is demonstrated through the analysis of trypsin digests of both bovine serum albumin (BSA) and Lactobacillus plantarum WCFS1 proteins.