175 resultados para Interface algorithms
Resumo:
This paper uses genetic algorithms to optimise the mathematical model of a beer fermentation process that operates in batch mode. The optimisation is based in adjusting the temperature profile of the mixture during a fixed period of time in order to reach the required ethanol levels but considering certain operational and quality restrictions.
Resumo:
We use ellipsometry to investigate a transition in the morphology of a sphere-forming diblock copolymer thin-film system. At an interface the diblock morphology may differ from the bulk when the interfacial tension favours wetting of the minority domain, thereby inducing a sphere-to-lamella transition. In a small, favourable window in energetics, one may observe this transition simply by adjusting the temperature. Ellipsometry is ideally suited to the study of the transition because the additional interface created by the wetting layer affects the polarisation of light reflected from the sample. Here we study thin films of poly(butadiene-ethylene oxide) (PB-PEO), which order to form PEO minority spheres in a PB matrix. As temperature is varied, the reversible transition from a partially wetting layer of PEO spheres to a full wetting layer at the substrate is investigated.
Resumo:
Two so-called “integrated” polarimetric rate estimation techniques, ZPHI (Testud et al., 2000) and ZZDR (Illingworth and Thompson, 2005), are evaluated using 12 episodes of the year 2005 observed by the French C-band operational Trappes radar, located near Paris. The term “integrated” means that the concentration parameter of the drop size distribution is assumed to be constant over some area and the algorithms retrieve it using the polarimetric variables in that area. The evaluation is carried out in ideal conditions (no partial beam blocking, no ground-clutter contamination, no bright band contamination, a posteriori calibration of the radar variables ZH and ZDR) using hourly rain gauges located at distances less than 60 km from the radar. Also included in the comparison, for the sake of benchmarking, is a conventional Z = 282R1.66 estimator, with and without attenuation correction and with and without adjustment by rain gauges as currently done operationally at Météo France. Under those ideal conditions, the two polarimetric algorithms, which rely solely on radar data, appear to perform as well if not better, pending on the measurements conditions (attenuation, rain rates, …), than the conventional algorithms, even when the latter take into account rain gauges through the adjustment scheme. ZZDR with attenuation correction is the best estimator for hourly rain gauge accumulations lower than 5 mm h−1 and ZPHI is the best one above that threshold. A perturbation analysis has been conducted to assess the sensitivity of the various estimators with respect to biases on ZH and ZDR, taking into account the typical accuracy and stability that can be reasonably achieved with modern operational radars these days (1 dB on ZH and 0.2 dB on ZDR). A +1 dB positive bias on ZH (radar too hot) results in a +14% overestimation of the rain rate with the conventional estimator used in this study (Z = 282R^1.66), a -19% underestimation with ZPHI and a +23% overestimation with ZZDR. Additionally, a +0.2 dB positive bias on ZDR results in a typical rain rate under- estimation of 15% by ZZDR.
Resumo:
We present some additions to a fuzzy variable radius niche technique called Dynamic Niche Clustering (DNC) (Gan and Warwick, 1999; 2000; 2001) that enable the identification and creation of niches of arbitrary shape through a mechanism called Niche Linkage. We show that by using this mechanism it is possible to attain better feature extraction from the underlying population.
Resumo:
The authors consider the problem of a robot manipulator operating in a noisy workspace. The manipulator is required to move from an initial position P(i) to a final position P(f). P(i) is assumed to be completely defined. However, P(f) is obtained by a sensing operation and is assumed to be fixed but unknown. The authors approach to this problem involves the use of three learning algorithms, the discretized linear reward-penalty (DLR-P) automaton, the linear reward-penalty (LR-P) automaton and a nonlinear reinforcement scheme. An automaton is placed at each joint of the robot and by acting as a decision maker, plans the trajectory based on noisy measurements of P(f).
Resumo:
In this paper, a continuation of a variable radius niche technique called Dynamic Niche Clustering developed by (Gan & Warwick, 1999) is presented. The technique employs a separate dynamic population of overlapping niches that coexists alongside the normal population. An empirical analysis of the updated methodology on a large group of standard optimisation test-bed functions is also given. The technique is shown to perform almost as well as standard fitness sharing with regards to stability and the accuracy of peak identification, but it outperforms standard fitness sharing with regards to time complexity. It is also shown that the technique is capable of forming niches of varying size depending on the characteristics of the underlying peak that the niche is populating.