109 resultados para Heterotrophic bacteria in the Arctic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

AOGCMs of the two latest phases (CMIP3 and CMIP5) of the Coupled Model Intercomparison Project, like earlier AOGCMs, predict large regional variations in future sea level change. The model-mean pattern of change in CMIP3 and CMIP5 is very similar, and its most prominent feature is a zonal dipole in the Southern Ocean: sea level rise is larger than the global mean north of 50°S and smaller than the global mean south of 50°S in most models. The individual models show widely varying patterns, although the inter-model spread in local sea level change is smaller in CMIP5 than in CMIP3. Here we investigate whether changes in windstress can explain the different patterns of projected sea level change, especially the Southern Ocean feature, using two AOGCMs forced by the changes in windstress from the CMIP3 and CMIP5 AOGCMs. We show that the strengthening and poleward shift of westerly windstress accounts for the most of the large spread among models in magnitude of this feature. In the Indian, North Pacific and Arctic Oceans, the windstress change is influential, but does not completely account for the projected sea level change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial distribution of ice thickness/draft in the Arctic Ocean is examined using a sea ice model. A comparison of model predictions with submarine observations of sea ice draft made during cruises between 1987 and 1997 reveals that the model has the same deficiencies found in previous studies, namely ice that is too thick in the Beaufort Sea and too thin near the North Pole. We find that increasing the large scale shear strength of the sea ice leads to substantial improvements in the model's spatial distribution of sea ice thickness, and simultaneously improves the agreement between modeled and ERS-derived 1993–2001 mean winter ice thickness.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five paired global climate model experiments, one with an ice pack that only responds thermodynamically (TI) and one including sea-ice dynamics (DI), were used to investigate the sensitivity of Arctic climates to sea-ice motion. The sequence of experiments includes situations in which the Arctic was both considerably colder (Glacial Inception, ca 115,000 years ago) and considerably warmer (3 × CO2) than today. Sea-ice motion produces cooler anomalies year-round than simulations without ice dynamics, resulting in reduced Arctic warming in warm scenarios and increased Arctic cooling in cold scenarios. These changes reflect changes in atmospheric circulation patterns: the DI simulations favor outflow of Arctic air and sea ice into the North Atlantic by promoting cyclonic circulation centered over northern Eurasia, whereas the TI simulations favor southerly inflow of much warmer air from the North Atlantic by promoting cyclonic circulation centered over Greenland. The differences between the paired simulations are sufficiently large to produce different vegetation cover over >19% of the land area north of 55°N, resulting in changes in land-surface characteristics large enough to have an additional impact on climate. Comparison of the DI and TI experiments for the mid-Holocene (6000 years ago) with paleovegetation reconstructions suggests the incorporation of sea-ice dynamics yields a more realistic simulation of high-latitude climates. The spatial pattern of sea-ice anomalies in the warmer-than-modern DI experiments strongly resembles the observed Arctic Ocean sea-ice dipole structure in recent decades, consistent with the idea that greenhouse warming is already impacting the high-northern latitudes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the potential contribution of observed changes in lower stratospheric water vapour to stratospheric temperature variations over the past three decades using a comprehensive global climate model (GCM). Three case studies are considered. In the first, the net increase in stratospheric water vapour (SWV) from 1980–2010 (derived from the Boulder frost-point hygrometer record using the gross assumption that this is globally representative) is estimated to have cooled the lower stratosphere by up to ∼0.2 K decade−1 in the global and annual mean; this is ∼40% of the observed cooling trend over this period. In the Arctic winter stratosphere there is a dynamical response to the increase in SWV, with enhanced polar cooling of 0.6 K decade−1 at 50 hPa and warming of 0.5 K decade−1 at 1 hPa. In the second case study, the observed decrease in tropical lower stratospheric water vapour after the year 2000 (imposed in the GCM as a simplified representation of the observed changes derived from satellite data) is estimated to have caused a relative increase in tropical lower stratospheric temperatures by ∼0.3 K at 50 hPa. In the third case study, the wintertime dehydration in the Antarctic stratospheric polar vortex (again using a simplified representation of the changes seen in a satellite dataset) is estimated to cause a relative warming of the Southern Hemisphere polar stratosphere by up to 1 K at 100 hPa from July–October. This is accompanied by a weakening of the westerly winds on the poleward flank of the stratospheric jet by up to 1.5 m s−1 in the GCM. The results show that, if the measurements are representative of global variations, SWV should be considered as important a driver of transient and long-term variations in lower stratospheric temperature over the past 30 years as increases in long-lived greenhouse gases and stratospheric ozone depletion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

g-butyrobetaine has long been known as the precursor of endogenous L-carnitine synthesis. In this issue, Koeth et al. (2014) demonstrate that it is also a major metabolite of L-carnitine degradation by gut bacteria that precedes the enteric production of trimethylamine and trimethylamine-N-oxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study monitored the dynamics and diversity of the human faecal 'Atopobium cluster' over a 3-month period using a polyphasic approach. Fresh faecal samples were collected fortnightly from 13 healthy donors (6 males and 7 females) aged between 26 and 61 years. Fluorescence in situ hybridization was used to enumerate total (EUB338mix) and 'Atopobium cluster' (ATO291) bacteria, with counts ranging between 1.12 × 1011 and 9.95 × 1011, and 1.03 × 109 and 1.16 × 1011 cells (g dry weight faeces)-1, respectively. The 'Atopobium cluster' population represented 0.2-22 % of the total bacteria, with proportions donor-dependent. Denaturing gradient gel electrophoresis (DGGE) using 'Atopobium cluster'-specific primers demonstrated faecal populations of these bacteria were relatively stable, with bands identified as Collinsella aerofaciens, Collinsella intestinalis/Collinsella stercoris, Collinsella tanakaei, Coriobacteriaceae sp. PEAV3-3, Eggerthella lenta, Gordonibacter pamelaeae, Olsenella profusa, Olsenella uli and Paraeggerthella hongkongensis in the DGGE profiles of individuals. Colony PCR was used to identify 'Atopobium cluster' bacteria isolated from faeces (n = 224 isolates). 16S rRNA gene sequence analysis of isolates demonstrated Collinsella aerofaciens represented the predominant (88 % of isolates) member of the 'Atopobium cluster' found in human faeces, being found in nine individuals. Eggerthella lenta was identified in three individuals (3.6 % of isolates). Isolates of Collinsella tanakaei, an 'Enorma' sp. and representatives of novel species belonging to the 'Atopobium cluster' were also identified in the study. Phenotypic characterization of the isolates demonstrated their highly saccharolytic nature and heterogeneous phenotypic profiles, and 97 % of the isolates displayed lipase activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are −4.4 (−13.2 to +10.7) ng g−1 for an earlier phase of AeroCom models (phase I), and +4.1 (−13.0 to +21.4) ng g−1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g−1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07–0.25) W m−2 and 0.18 (0.06–0.28) W m−2 in phase I and phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W m−2 for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dispersal provides the opportunity to escape harm and colonize new patches, enabling populations to expand and persist. However, the benefits of dispersal associated with escaping harm will be dependent on the structure of the environment and the likelihood of escape. Here, we empirically investigate how the spatial distribution of a parasite influences the evolution of host dispersal. Bacteriophages are a strong and common threat for bacteria in natural environments and offer a good system with which to explore parasite-mediated selection on host dispersal. We used two transposon mutants of the opportunistic bacteria, Pseudomonas aeruginosa, which varied in their motility (a disperser and a nondisperser), and the lytic bacteriophage ФKZ. The phage was distributed either in the central point of colony inoculation only, thus offering an escape route for the dispersing bacteria; or, present throughout the agar, where benefits of dispersal might be lost. Surprisingly, we found dispersal to be equally advantageous under both phage conditions relative to when phages were absent. A general explanation is that dispersal decreased the spatial structuring of host population, reducing opportunities for parasite transmission, but other more idiosyncratic mechanisms may also have contributed. This study highlights the crucial role the parasites can play on the evolution of dispersal and, more specifically, that bacteriophages, which are ubiquitous, are likely to select for bacterial motility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current feed evaluation systems for ruminants are too imprecise to describe diets in terms of their acidosis risk. The dynamic mechanistic model described herein arises from the integration of a lactic acid (La) metabolism module into an extant model of whole-rumen function. The model was evaluated using published data from cows and sheep fed a range of diets or infused with various doses of La. The model performed well in simulating peak rumen La concentrations (coefficient of determination = 0.96; root mean square prediction error = 16.96% of observed mean), although frequency of sampling for the published data prevented a comprehensive comparison of prediction of time to peak La accumulation. The model showed a tendency for increased La accumulation following feeding of diets rich in nonstructural carbohydrates, although less-soluble starch sources such as corn tended to limit rumen La concentration. Simulated La absorption from the rumen remained low throughout the feeding cycle. The competition between bacteria and protozoa for rumen La suggests a variable contribution of protozoa to total La utilization. However, the model was unable to simulate the effects of defaunation on rumen La metabolism, indicating a need for a more detailed description of protozoal metabolism. The model could form the basis of a feed evaluation system with regard to rumen La metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is amplified in the Arctic region. Arctic amplification has been found in past warm1 and glacial2 periods, as well as in historical observations3, 4 and climate model experiments5, 6. Feedback effects associated with temperature, water vapour and clouds have been suggested to contribute to amplified warming in the Arctic, but the surface albedo feedback—the increase in surface absorption of solar radiation when snow and ice retreat—is often cited as the main contributor7, 8, 9, 10. However, Arctic amplification is also found in models without changes in snow and ice cover11, 12. Here we analyse climate model simulations from the Coupled Model Intercomparison Project Phase 5 archive to quantify the contributions of the various feedbacks. We find that in the simulations, the largest contribution to Arctic amplification comes from a temperature feedbacks: as the surface warms, more energy is radiated back to space in low latitudes, compared with the Arctic. This effect can be attributed to both the different vertical structure of the warming in high and low latitudes, and a smaller increase in emitted blackbody radiation per unit warming at colder temperatures. We find that the surface albedo feedback is the second main contributor to Arctic amplification and that other contributions are substantially smaller or even opposeArctic amplification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future land use change (LUC) is an important component of the IPCC representative concentration pathways (RCPs), but in these scenarios' radiative forcing targets the climate impact of LUC only includes greenhouse gases. However, climate effects due to physical changes of the land surface can be as large. Here we show the critical importance of including non-carbon impacts of LUC when considering the RCPs. Using an ensemble of climate model simulations with and without LUC, we show that the net climate effect is very different from the carbon-only effect. Despite opposite signs of LUC, all the RCPs assessed here have a small net warming from LUC because of varying biogeophysical effects, and in RCP4.5 the warming is outside of the expected variability. The afforestation in RCP4.5 decreases surface albedo, making the net global temperature anomaly over land around five times larger than RCPs 2.6 and 8.5, for around twice the amount of LUC. Consequent changes to circulation in RCP4.5 in turn reduce Arctic sea ice cover. The small net positive temperature effect from LUC could make RCP4.5's universal carbon tax, which incentivizes retaining and growing forest, counter productive with respect to climate. However, there are spatial differences in the balance of impacts, and potential climate gains would need to be assessed against other environmental aims.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last interglaciation (substage 5e) provides an opportunity to examine the effects of extreme orbital changes on regional climates. We have made two atmospheric general circulation model experiments: P+T+ approximated the northern hemisphere seasonality maximum near the beginning of 5e; P-T- approximated the minimum near the end of 5e. Simulated regional climate changes have been translated into biome changes using a physiologically based model of global vegetation types. Major climatic and vegetational changes were simulated for the northern hemisphere extratropics, due to radiational effects that were both amplified and modified by atmospheric circulation changes and sea-ice feedback. P+T+ showed mid-continental summers up to 8°C warmer than present. Mid-latitude winters were 2-4°C cooler than present but in the Arctic, summer warmth reduced sea-ice extent and thickness, producing winters 2-8°C warmer than present. The tundra and taiga biomes were displaced poleward, while warm-summer steppes expanded in the mid latitudes due to drought. P-T- showed summers up to 5°C cooler than present, especially in mid latitudes. Sea ice and snowpack were thicker and lasted longer; polar desert, tundra, and taiga biomes were displaced equatorward, while cool-summer steppes and semideserts expanded due to the cooling. A slight winter warming in mid latitudes, however, caused warm-temperate evergreen forests and scrub to expand poleward. Such qualitative contrasts in the direction of climate and vegetation change during 5e should be identifiable in the paleorecord

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Arctic sea ice retreat has accelerated over the last decade. The negative trend is largest in summer, but substantial interannual variability still remains. Here we explore observed atmospheric conditions and feedback mechanisms during summer months of anomalous sea ice melt in the Arctic. Compositing months of anomalous low and high sea ice melt over 1979–2013, we find distinct patterns in atmospheric circulation, precipitation, radiation, and temperature. Compared to summer months of anomalous low sea ice melt, high melt months are characterized by anomalous high sea level pressure in the Arctic (up to 7 hPa), with a corresponding tendency of storms to track on a more zonal path. As a result, the Arctic receives less precipitation overall and 39% less snowfall. This lowers the albedo of the region and reduces the negative feedback the snowfall provides for the sea ice. With an anticyclonic tendency, 12 W/m2 more incoming shortwave radiation reaches the surface in the start of the season. The melting sea ice in turn promotes cloud development in the marginal ice zones and enhances downwelling longwave radiation at the surface toward the end of the season. A positive cloud feedback emerges. In midlatitudes, the more zonally tracking cyclones give stormier, cloudier, wetter, and cooler summers in most of northern Europe and around the Sea of Okhotsk. Farther south, the region from the Mediterranean Sea to East Asia experiences significant surface warming (up to 2.4◦C), possibly linked to changes in the jet stream.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research suggests Eurasian snow-covered area (SCA) influences the Arctic Oscillation (AO) via the polar vortex. This could be important for Northern Hemisphere winter season forecasting. A fairly strong negative correlation between October SCA and the AO, based on both monthly and daily observational data, has been noted in the literature. While reproducing these previous links when using the same data, we find no further evidence of the link when using an independent satellite data source, or when using a climate model.