113 resultados para Ground beetles.
Resumo:
ESA’s first multi-satellite mission Cluster is unique in its concept of 4 satellites orbiting in controlled formations. This will give an unprecedented opportunity to study structure and dynamics of the magnetosphere. In this paper we discuss ways in which ground-based remote-sensing observations of the ionosphere can be used to support the multipoint in-situ satellite measurements. There are a very large number of potentially useful configurations between the satellites and any one ground-based observatory; however, the number of ideal occurrences for any one configuration is low. Many of the ground-based instruments cannot operate continuously and Cluster will take data only for a part of each orbit, depending on how much high-resolution (‘burst-mode’) data are acquired. In addition, there are a great many instrument modes and the formation, size and shape of the cluster of the four satellites to consider. These circumstances create a clear and pressing need for careful planning to ensure that the scientific return from Cluster is maximised by additional coordinated ground-based observations. For this reason, ESA established a working group to coordinate the observations on the ground with Cluster. We will give a number of examples how the combined spacecraft and ground-based observations can address outstanding questions in magnetospheric physics. An online computer tool has been prepared to allow for the planning of conjunctions and advantageous constellations between the Cluster spacecraft and individual or combined ground-based systems. During the mission a ground-based database containing index and summary data will help to identify interesting datasets and allow to select intervals for coordinated studies. We illustrate the philosophy of our approach, using a few important examples of the many possible configurations between the satellite and the ground-based instruments.
Resumo:
A coordinated ground-based observational campaign using the IMAGE magnetometer network, EISCAT radars and optical instruments on Svalbard has made possible detailed studies of a travelling convection vortices (TCV) event on 6 January 1992. Combining the data from these facilities allows us to draw a very detailed picture of the features and dynamics of this TCV event. On the way from the noon to the drawn meridian, the vortices went through a remarkable development. The propagation velocity in the ionosphere increased from 2.5 to 7.4 km s−1, and the orientation of the major axes of the vortices rotated from being almost parallel to the magnetic meridian near noon to essentially perpendicular at dawn. By combining electric fields obtained by EISCAT and ionospheric currents deduced from magnetic field recordings, conductivities associated with the vortices could be estimated. Contrary to expectations we found higher conductivities below the downward field aligned current (FAC) filament than below the upward directed. Unexpected results also emerged from the optical observations. For most of the time there were no discrete aurora at 557.7 nm associated with the TCVs. Only once did a discrete form appear at the foot of the upward FAC. This aurora subsequently expanded eastward and westward leaving its centre at the same longitude while the TCV continued to travel westward. Also we try to identify the source regions of TCVs in the magnetosphere and discuss possible generation mechanisms.
Resumo:
We present an analysis of a cusp ion step, observed by the Defense Meteorological Satellite Program (DMSP) F10 spacecraft, between two poleward moving events of enhanced ionospheric electron temperature, observed by the European Incoherent Scatter (EISCAT) radar. From the ions detected by the satellite, the variation of the reconnection rate is computed for assumed distances along the open-closed field line separatrix from the satellite to the X line, do. Comparison with the onset times of the associated ionospheric events allows this distance to be estimated, but with an uncertainty due to the determination of the low-energy cutoff of the ion velocity distribution function, ƒ(ν). Nevertheless, the reconnection site is shown to be on the dayside magnetopause, consistent with the reconnection model of the cusp during southward interplanetary magnetic field (IMF). Analysis of the time series of distribution function at constant energies, ƒ(ts), shows that the best estimate of the distance do is 14.5±2 RE. This is consistent with various magnetopause observations of the signatures of reconnection for southward IMF. The ion precipitation is used to reconstruct the field-parallel part of the Cowley D ion distribution function injected into the open low-latitude boundary layer in the vicinity of the X line. From this reconstruction, the field-aligned component of the magnetosheath flow is found to be only −55±65 km s−1 near the X line, which means either that the reconnection X line is near the stagnation region at the nose of the magnetosphere, or that it is closely aligned with the magnetosheath flow streamline which is orthogonal to the magnetosheath field, or both. In addition, the sheath Alfvén speed at the X line is found to be 220±45 km s−1, and the speed with which newly opened field lines are ejected from the X line is 165±30 km s−1. We show that the inferred magnetic field, plasma density, and temperature of the sheath near the X line are consistent with a near-subsolar reconnection site and confirm that the magnetosheath field makes a large angle (>58°) with the X line.
Resumo:
A method for estimating both the Alfvén speed and the field-aligned flow of the magnetosheath at the magnetopause reconnection site is presented. The method employs low-altitude cusp ion observations and requires the identification of a feature in the cusp ion spectra near the low-energy cutoff which will often be present for a low-latitude dayside reconnection site. The appearance of these features in data of limited temporal, energy, and pitch angle resolution is illustrated by using model calculations of cusp ion distribution functions. These are based on the theory of ion acceleration at the dayside magnetopause and allow for the effects on the spectrum of flight times of ions precipitating down newly opened field lines. In addition, the variation of the reconnection rate can be evaluated, and comparison with ground-based observations of the corresponding sequence of transient events allows the field-aligned distance from the ionosphere to the reconnection site to be estimated.
Resumo:
We discuss substorm observations made near 2100 magnetic local time (MLT) on March 7, 1991, in a collaborative study involving data from the European Incoherent Scatter radar, all-sky camera data, and magnetometer data from the Tromsø Auroral Observatory, the U.K. Sub-Auroral Magnetometer Network (SAMNET) and the IMAGE magnetometer chain. We conclude that for the substorm studied a plasmoid was not pinched off until at least 10 min after onset at the local time of the observations (2100 MLT) and that the main substorm electrojet expanded westward over this local time 14 min after onset. In the late growth phase/early expansion phase, we observed southward drifting arcs probably moving faster than the background plasma. Similar southward moving arcs in the recovery phase moved at a speed which does not appear to be significantly different from the measured plasma flow speed. We discuss these data in terms of the “Kiruna conjecture” and classical “near-Earth neutral line” paradigms, since the data show features of both models of substorm development. We suggest that longitudinal variation in behavior may reconcile the differences between the two models in the case of this substorm.
Resumo:
The terrestrial magnetopause suffered considerable sudden changes in its location on 9–10 September 1978. These magnetopause motions were accompanied by disturbances of the geomagnetic field on the ground. We present a study of the magnetopause motions and the ground magnetic signatures using, for the latter, 10 s averaged data from 14 high latitude ground magnetometer stations. Observations in the solar wind (from IMP 8) are employed and the motions of the magnetopause are monitored directly by the spacecraft ISEE 1 and 2. With these coordinated observations we are able to show that it is the sudden changes in the solar wind dynamic pressure that are responsible for the disturbances seen on the ground. At some ground stations we see evidence of a “ringing” of the magnetospheric cavity, while at others only the initial impulse is evident. We note that at some stations field perturbations closely match the hypothesized ground signatures of flux transfer events. In accordance with more recent work in the area (e.g. Potemra et al., 1989, J. geophys. Res., in press), we argue that causes other than impulsive reeonnection may produce the twin ionospheric flow vortex originally proposed as a flux transfer even signature.
Resumo:
Namibia has high levels of invertebrate endemism, but biodiversity research has been geographically and taxonomically limited. In South African savannah, species richness of ground-foraging ant assemblages is regulated by dominant ant species, but this pattern has not been tested in other arid environments. In this study, we provide a description of ant diversity at baits in three different Namibian habitats (savannah, saltpan and desert), and we test the relationship between ant dominance and richness for ground-foraging and arboreal species. Forty-two ant species were collected in this study, with species richness being highest in the saltpan, followed by savannah and then desert. Ant assemblages were most similar between the savannah and desert, due to shared arboreal species. Similarity between savannah and saltpan ant assemblages was due to an overlap in ground-foraging species. Ground ants were more diverse than arboreal ants, and several species were observed at baits for both strata, although the degree of overlap varied with habitat type. The dominance-richness relationship varied depending on habitat and sampling strata. We found a unimodal relationship in the saltpan, but not in the savannah. For ground ants the relationship was logarithmic, with increasing abundance of dominants leading to decreasing overall species richness. However, no trend was observed for the arboreal ant assemblage. In the desert, low ant abundance meant that we were unable to assign species dominance, possibly due to reduced foraging activity caused by high temperatures. The lack of a consistent dominance-richness trend across assemblages may be the result of varying degrees of environmental stress or competition. Our study is a preliminary description of diversity and dominance in Namibia, and we hope it stimulates further research on ant assemblages in arid regions of Africa.
Resumo:
A ground source heat pump assisted by an array of photovoltaic (PV)-thermal modules was studied in this work. Extracting heat from an array of PV modules should improve the performance of both the PV cells and the heat pump. A series of computer simulations compare the performance of a ground source heat pump with a short ground circuit, used to provide space heating and domestic hot water at a house in southern England. The results indicate that extracting heat from an array of PV-thermal modules would improve the performance of a ground source heat pump with an undersized ground loop. Nevertheless, open air thermal collectors could be more effective, especially during winter. In one model more electricity was saved in ohmic heating than was generated by cooling the PV cells. Cooling the PV modules was found to increase their electrical output up to 4%, but much of the extra electricity was consumed by the cooling pumps.
Resumo:
The Finnish Meteorological Institute, in collaboration with the University of Helsinki, has established a new ground-based remote-sensing network in Finland. The network consists of five topographically, ecologically and climatically different sites distributed from southern to northern Finland. The main goal of the network is to monitor air pollution and boundary layer properties in near real time, with a Doppler lidar and ceilometer at each site. In addition to these operational tasks, two sites are members of the Aerosols, Clouds and Trace gases Research InfraStructure Network (ACTRIS); a Ka band cloud radar at Sodankylä will provide cloud retrievals within CloudNet, and a multi-wavelength Raman lidar, PollyXT (POrtabLe Lidar sYstem eXTended), in Kuopio provides optical and microphysical aerosol properties through EARLINET (the European Aerosol Research Lidar Network). Three C-band weather radars are located in the Helsinki metropolitan area and are deployed for operational and research applications. We performed two inter-comparison campaigns to investigate the Doppler lidar performance, compare the backscatter signal and wind profiles, and to optimize the lidar sensitivity through adjusting the telescope focus length and data-integration time to ensure sufficient signal-to-noise ratio (SNR) in low-aerosol-content environments. In terms of statistical characterization, the wind-profile comparison showed good agreement between different lidars. Initially, there was a discrepancy in the SNR and attenuated backscatter coefficient profiles which arose from an incorrectly reported telescope focus setting from one instrument, together with the need to calibrate. After diagnosing the true telescope focus length, calculating a new attenuated backscatter coefficient profile with the new telescope function and taking into account calibration, the resulting attenuated backscatter profiles all showed good agreement with each other. It was thought that harsh Finnish winters could pose problems, but, due to the built-in heating systems, low ambient temperatures had no, or only a minor, impact on the lidar operation – including scanning-head motion. However, accumulation of snow and ice on the lens has been observed, which can lead to the formation of a water/ice layer thus attenuating the signal inconsistently. Thus, care must be taken to ensure continuous snow removal.
Resumo:
Met Office station data from 1980 to 2012 has been used to characterise the interannual variability of incident solar irradiance across the UK. The same data are used to evaluate four popular historical irradiance products to determine which are most suitable for use by the UK PV industry for site selection and system design. The study confirmed previous findings that interannual variability is typically 3–6% and weighted average probability of a particular percentage deviation from the mean at an average site in the UK was calculated. This weighted average showed that fewer than 2% of site-years could be expected to fall below 90% of the long-term site mean. The historical irradiance products were compared against Met Office station data from the input years of each product. This investigation has found that all products perform well. No products have a strong spatial trend. Meteonorm 7 is most conservative (MBE = −2.5%), CMSAF is most optimistic (MBE = +3.4%) and an average of all four products performs better than any one individual product (MBE = 0.3%)