115 resultados para Greenhouse gases (GHG)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transient and equilibrium sensitivity of Earth's climate has been calculated using global temperature, forcing and heating rate data for the period 1970–2010. We have assumed increased long-wave radiative forcing in the period due to the increase of the long-lived greenhouse gases. By assuming the change in aerosol forcing in the period to be zero, we calculate what we consider to be lower bounds to these sensitivities, as the magnitude of the negative aerosol forcing is unlikely to have diminished in this period. The radiation imbalance necessary to calculate equilibrium sensitivity is estimated from the rate of ocean heat accumulation as 0.37±0.03W m^−2 (all uncertainty estimates are 1−σ). With these data, we obtain best estimates for transient climate sensitivity 0.39±0.07K (W m^−2)^−1 and equilibrium climate sensitivity 0.54±0.14K (W m^−2)^−1, equivalent to 1.5±0.3 and 2.0±0.5K (3.7W m^−2)^−1, respectively. The latter quantity is equal to the lower bound of the ‘likely’ range for this quantity given by the 2007 IPCC Assessment Report. The uncertainty attached to the lower-bound equilibrium sensitivity permits us to state, within the assumptions of this analysis, that the equilibrium sensitivity is greater than 0.31K (W m^−2)^−1, equivalent to 1.16K(3.7W m^−2)^−1, at the 95% confidence level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geoengineering by injection of reflective aerosols into the stratosphere has been proposed as a way to counteract the warming effect of greenhouse gases by reducing the intensity of solar radiation reaching the surface. Here, climate model simulations are used to examine the effect of geoengineering on the tropical overturning circulation. The strength of the circulation is related to the atmospheric static stability and has implications for tropical rainfall. The tropical circulation is projected to weaken under anthropogenic global warming. Geoengineering with stratospheric sulfate aerosol does not mitigate this weakening of the circulation. This response is due to a fast adjustment of the troposphere to radiative heating from the aerosol layer. This effect is not captured when geoengineering is modelled as a reduction in total solar irradiance, suggesting caution is required when interpreting model results from solar dimming experiments as analogues for stratospheric aerosol geoengineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Observations of Earth from space have been made for over 40 years and have contributed to advances in many aspects of climate science. However, attempts to exploit this wealth of data are often hampered by a lack of homogeneity and continuity and by insufficient understanding of the products and their uncertainties. There is, therefore, a need to reassess and reprocess satellite datasets to maximize their usefulness for climate science. The European Space Agency has responded to this need by establishing the Climate Change Initiative (CCI). The CCI will create new climate data records for (currently) 13 essential climate variables (ECVs) and make these open and easily accessible to all. Each ECV project works closely with users to produce time series from the available satellite observations relevant to users' needs. A climate modeling users' group provides a climate system perspective and a forum to bring the data and modeling communities together. This paper presents the CCI program. It outlines its benefit and presents approaches and challenges for each ECV project, covering clouds, aerosols, ozone, greenhouse gases, sea surface temperature, ocean color, sea level, sea ice, land cover, fire, glaciers, soil moisture, and ice sheets. It also discusses how the CCI approach may contribute to defining and shaping future developments in Earth observation for climate science.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The National Center for Atmospheric Research-Community Climate System Model (NCAR-CCSM) is used in a coupled atmosphere–ocean–sea-ice simulation of the Last Glacial Maximum (LGM, around 21,000 years ago) climate. In the tropics, the simulation shows a moderate cooling of 3 °C over land and 2 °C in the ocean in zonal average. This cooling is about 1 °C cooler than the CLIMAP sea surface temperatures (SSTs) but consistent with recent estimates of both land and sea surface temperature changes. Subtropical waters are cooled by 2–2.5 °C, also in agreement with recent estimates. The simulated oceanic thermohaline circulation at the LGM is not only shallower but also weaker than the modern with a migration of deep-water formation site in the North Atlantic as suggested by the paleoceanographic evidences. The simulated northward flow of Antarctic Bottom Water (AABW) is enhanced. These deep circulation changes are attributable to the increased surface density flux in the Southern Ocean caused by sea-ice expansion at the LGM. Both the Gulf Stream and the Kuroshio are intensified due to the overall increase of wind stress over the subtropical oceans. The intensified zonal wind stress and southward shift of its maximum in the Southern Ocean effectively enhances the transport of the Antarctic Circumpolar Current (ACC) by more than 50%. Simulated SSTs are lowered by up to 8 °C in the midlatitudes. Simulated conditions in the North Atlantic are warmer and with less sea-ice than indicated by CLIMAP again, in agreement with more recent estimates. The increased meridional SST gradient at the LGM results in an enhanced Hadley Circulation and increased midlatitude storm track precipitation. The increased baroclinic storm activity also intensifies the meridional atmospheric heat transport. A sensitivity experiment shows that about half of the simulated tropical cooling at the LGM originates from reduced atmospheric concentrations of greenhouse gases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

European grassland-based livestock production systems are challenged to produce more milk and meat to meet increasing world demand and to achieve this by using fewer resources. Legumes offer great potential for coping with such requests. They have numerous features that can act together at different stages in the soil-plant-animal-atmosphere system and these are most effective in mixed swards with a legume abundance of 30-50%. The resulting benefits are a reduced dependency on fossil energy and industrial N fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication due to bioactive secondary metabolites. In addition, legumes may offer an option for adapting to higher atmospheric CO2 concentrations and to climate change. Legumes generate these benefits at the level of the managed land area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research in order to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland-livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can only be expected that legumes will become more important in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well known that atmospheric concentrations of carbon dioxide (CO2) (and other greenhouse gases) have increased markedly as a result of human activity since the industrial revolution. It is perhaps less appreciated that natural and managed soils are an important source and sink for atmospheric CO2 and that, primarily as a result of the activities of soil microorganisms, there is a soil-derived respiratory flux of CO2 to the atmosphere that overshadows by tenfold the annual CO2 flux from fossil fuel emissions. Therefore small changes in the soil carbon cycle could have large impacts on atmospheric CO2 concentrations. Here we discuss the role of soil microbes in the global carbon cycle and review the main methods that have been used to identify the microorganisms responsible for the processing of plant photosynthetic carbon inputs to soil. We discuss whether application of these techniques can provide the information required to underpin the management of agro-ecosystems for carbon sequestration and increased agricultural sustainability. We conclude that, although crucial in enabling the identification of plant-derived carbon-utilising microbes, current technologies lack the high-throughput ability to quantitatively apportion carbon use by phylogentic groups and its use efficiency and destination within the microbial metabolome. It is this information that is required to inform rational manipulation of the plant–soil system to favour organisms or physiologies most important for promoting soil carbon storage in agricultural soil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

European grassland-based livestock production systems face the challenge of producing more meat and milk to meet increasing world demands and to achieve this using fewer resources. Legumes offer great potential for achieving these objectives. They have numerous features that can act together at different stages in the soil–plant–animal–atmosphere system, and these are most effective in mixed swards with a legume proportion of 30–50%. The resulting benefits include reduced dependence on fossil energy and industrial N-fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication, due to the presence of bioactive secondary metabolites. In addition, legumes may offer an adaptation option to rising atmospheric CO2 concentrations and climate change. Legumes generate these benefits at the level of the managed land-area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland–livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can be expected that forage legumes will become more important in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigates the potential contribution of observed changes in lower stratospheric water vapour to stratospheric temperature variations over the past three decades using a comprehensive global climate model (GCM). Three case studies are considered. In the first, the net increase in stratospheric water vapour (SWV) from 1980–2010 (derived from the Boulder frost-point hygrometer record using the gross assumption that this is globally representative) is estimated to have cooled the lower stratosphere by up to ∼0.2 K decade−1 in the global and annual mean; this is ∼40% of the observed cooling trend over this period. In the Arctic winter stratosphere there is a dynamical response to the increase in SWV, with enhanced polar cooling of 0.6 K decade−1 at 50 hPa and warming of 0.5 K decade−1 at 1 hPa. In the second case study, the observed decrease in tropical lower stratospheric water vapour after the year 2000 (imposed in the GCM as a simplified representation of the observed changes derived from satellite data) is estimated to have caused a relative increase in tropical lower stratospheric temperatures by ∼0.3 K at 50 hPa. In the third case study, the wintertime dehydration in the Antarctic stratospheric polar vortex (again using a simplified representation of the changes seen in a satellite dataset) is estimated to cause a relative warming of the Southern Hemisphere polar stratosphere by up to 1 K at 100 hPa from July–October. This is accompanied by a weakening of the westerly winds on the poleward flank of the stratospheric jet by up to 1.5 m s−1 in the GCM. The results show that, if the measurements are representative of global variations, SWV should be considered as important a driver of transient and long-term variations in lower stratospheric temperature over the past 30 years as increases in long-lived greenhouse gases and stratospheric ozone depletion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global warming has attracted attention from all over the world and led to the concern about carbon emission. Kyoto Protocol, as the first major international regulatory emission trading scheme, was introduced in 1997 and outlined the strategies for reducing carbon emission (Ratnatunga et al., 2011). As the increased interest in carbon reduction the Protocol came into force in 2005, currently there are already 191 nations ratifying the Protocol(UNFCCC, 2012). Under the cap-and-trade schemes, each company has its carbon emission target. When company’s carbon emission exceeds the target the company will either face fines or buy emission allowance from other companies. Thus unlike most of the other social and environmental issues carbon emission could trigger cost for companies in introducing low-emission equipment and systems and also emission allowance cost when they emit more than their targets. Despite the importance of carbon emission to companies, carbon emission reporting is still operating under unregulated environment and companies are only required to disclose when it is material either in value or in substances (Miller, 2005, Deegan and Rankin, 1997). Even though there is still an increase in the volume of carbon emission disclosures in company’s financial reports and stand-alone social and environmental reports to show their concern of the environment and also their social responsibility (Peters and Romi, 2009), the motivations behind corporate carbon emission disclosures and whether carbon disclosures have impact on corporate environmental reputation and financial performance have not yet to explore. The problems with carbon emission lie on both the financial side and non-financial side of corporate governance. On one hand corporate needs to spend money in reducing carbon emission or paying penalties when they emit more than allowed. On the other hand as the public are more interested in environmental issues than before carbon emission could also impact on the image of corporate regarding to its environmental performance. The importance of carbon emission issue are beginning to be recognized by companies from different industries as one of the critical issues in supply chain management (Lee, 2011) and 80% of companies analysed are facing carbon risks resulting from emissions in the companies’ supply chain as shown in a study conducted by the Investor Responsibility Research Centre Institute for Corporate Responsibility (IRRCI) and over 80% of the companies analysed found that the majority of greenhouse gas (GHG) emission are from electricity and other direct suppliers (Trucost, 2009). The review of extant literature shows the increased importance of carbon emission issues and the gap in the study of carbon reporting and disclosures and also the study which links corporate environmental reputation and corporate financial performance with carbon reporting (Lohmann, 2009a, Ratnatunga and Balachandran, 2009, Bebbington and Larrinaga-Gonzalez, 2008). This study would focus on investigating the current status of UK carbon emission disclosures, the determinant factors of corporate carbon disclosure, and the relationship between carbon emission disclosures and corporate environmental reputation and financial performance of UK listed companies from 2004-2012 and explore the explanatory power of classical disclosure theories.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the winter of 2013/14, much of the UK experienced repeated intense rainfall events and flooding. This had a considerable impact on property and transport infrastructure. A key question is whether the burning of fossil fuels is changing the frequency of extremes, and if so to what extent. We assess the scale of the winter flooding before reviewing a broad range of Earth system drivers affecting UK rainfall. Some drivers can be potentially disregarded for these specific storms whereas others are likely to have increased their risk of occurrence. We discuss the requirements of hydrological models to transform rainfall into river flows and flooding. To determine any general changing flood risk, we argue that accurate modelling needs to capture evolving understanding of UK rainfall interactions with a broad set of factors. This includes changes to multiscale atmospheric, oceanic, solar and sea-ice features, and land-use and demographics. Ensembles of such model simulations may be needed to build probability distributions of extremes for both pre-industrial and contemporary concentration levels of atmospheric greenhouse gases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Policy-makers are creating mechanisms to help developing countries cope with loss and damage from climate change, but the negotiations are largely neglecting scientific questions about what the impacts of climate change actually are. Mitigation efforts have failed to prevent the continued increase of anthropogenic greenhouse gas (GHG) emissions. Adaptation is now unlikely to be sufficient to prevent negative impacts from current and future climate change1. In this context, vulnerable nations argue that existing frameworks to promote mitigation and adaptation are inadequate, and have called for a third international mechanism to deal with residual climate change impacts, or “loss and damage”2. In 2013, the United Nations Framework Convention on Climate Change (UNFCCC) responded to these calls and established the Warsaw International Mechanism (WIM) to address loss and damage from the impacts of climate change in developing countries3. An interim Executive Committee of party representatives has been set up, and is currently drafting a two-year workplan comprising meetings, reports, and expert groups; and aiming to enhance knowledge and understanding of loss and damage, strengthen dialogue among stakeholders, and promote enhanced action and support. Issues identified as priorities for the WIM thus far include: how to deal with non-economic losses, such as loss of life, livelihood, and cultural heritage; and linkages between loss and damage and patterns of migration and displacement2. In all this, one fundamental issue still demands our attention: which losses and damages are relevant to the WIM? What counts as loss and damage from climate change?

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intensive farming focusing on monoculture grass species to maximise forage production has led to a reduction in the extent and diversity of species-rich grasslands. However, plant communities with higher species number (richness) are a potential strategy for more sustainable production and mitigation of greenhouse gas (GHG) emissions. Research has indicated the need to understand opportunities that forage mixtures can offer sustainable ruminant production systems. The objective of the two experiments reported here were to evaluate multiple species forage mixtures in comparison to ryegrass-dominant pasture, when conserved or grazed, on digestion, energy utilisation, N excretion, and methane emissions by growing 10–15 month old heifers. Experiment 1 was a 4 × 4 Latin square design with five week periods. Four forage treatments of: (1) ryegrass (control); permanent pasture with perennial ryegrass (Lolium perenne); (2) clover; a ryegrass:red clover (Trifolium pratense) mixture; (3) trefoil; a ryegrass:birdsfoot trefoil (Lotus corniculatus) mixture; and (4) flowers; a ryegrass:wild flower mixture of predominately sorrel (Rumex acetosa), ox-eye daisy (Leucanthemum vulgare), yarrow (Achillea millefolium), knapweed (Centaurea nigra) and ribwort plantain (Plantago lanceolata), were fed as haylages to four dairy heifers. Measurements included digestibility, N excretion, and energy utilisation (including methane emissions measured in respiration chambers). Experiment 2 used 12 different dairy heifers grazing three of the same forage treatments used to make haylage in experiment 1 (ryegrass, clover and flowers) and methane emissions were estimated using the sulphur hexafluoride (SF6) tracer technique. Distribution of ryegrass to other species (dry matter (DM) basis) was approximately 70:30 (clover), 80:20 (trefoil), and 40:60 (flowers) for experiment 1. During the first and second grazing rotations (respectively) in experiment 2, perennial ryegrass accounted for 95 and 98% of DM in ryegrass, and 84 and 52% of DM in clover, with red clover accounting for almost all of the remainder. In the flowers mixture, perennial ryegrass was 52% of the DM in the first grazing rotation and only 30% in the second, with a variety of other flower species occupying the remainder. Across both experiments, compared to the forage mixtures (clover, trefoil and flowers), ryegrass had a higher crude protein (CP) content (P < 0.001, 187 vs. 115 g kg −1 DM) and DM intake (P < 0.05, 9.0 vs. 8.1 kg day −1). Heifers in experiment 1 fed ryegrass, compared to the forage mixtures, had greater total tract digestibility (g kg −1) of DM (DMD; P < 0.008, 713 vs. 641) and CP (CPD, P < 0.001, 699 vs. 475), and used more intake energy (%) for body tissue deposition (P < 0.05, 2.6 vs. −4.9). For both experiments, heifers fed flowers differed the most compared to the ryegrass control for a number of measurements. Compared to ryegrass, flowers had 40% lower CP content (P < 0.001, 113 vs. 187 g kg −1), 18% lower DMD (P < 0.01, 585 vs. 713 g kg −1), 42% lower CPD (P < 0.001, 407 vs. 699 g kg −1), and 10% lower methane yield (P < 0.05, 22.6 vs. 25.1 g kg −1 DM intake). This study has shown inclusion of flowers in forage mixtures resulted in a lower CP concentration, digestibility and intake. These differences were due in part to sward management and maturity at harvest. Further research is needed to determine how best to exploit the potential environmental benefits of forage mixtures in sustainable ruminant production systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A recent temperature reconstruction of global annual temperature shows Early Holocene warmth followed by a cooling trend through the Middle to Late Holocene [Marcott SA, et al., 2013, Science 339(6124):1198–1201]. This global cooling is puzzling because it is opposite from the expected and simulated global warming trend due to the retreating ice sheets and rising atmospheric greenhouse gases. Our critical reexamination of this contradiction between the reconstructed cooling and the simulated warming points to potentially significant biases in both the seasonality of the proxy reconstruction and the climate sensitivity of current climate models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geoengineering by stratospheric aerosol injection has been proposed as a policy response to warming from human emissions of greenhouse gases, but it may produce unequal regional impacts. We present a simple, intuitive risk-based framework for classifying these impacts according to whether geoengineering increases or decreases the risk of substantial climate change, with further classification by the level of existing risk from climate change from increasing carbon dioxide concentrations. This framework is applied to two climate model simulations of geoengineering counterbalancing the surface warming produced by a quadrupling of carbon dioxide concentrations, with one using a layer of sulphate aerosol in the lower stratosphere, and the other a reduction in total solar irradiance. The solar dimming model simulation shows less regional inequality of impacts compared with the aerosol geoengineering simulation. In the solar dimming simulation, 10% of the Earth’s surface area, containing 10% of its population and 11% of its gross domestic product, experiences greater risk of substantial precipitation changes under geoengineering than under enhanced carbon dioxide concentrations. In the aerosol geoengineering simulation the increased risk of substantial precipitation change is experienced by 42% of Earth’s surface area, containing 36% of its population and 60% of its gross domestic product.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by bias-corrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty.