161 resultados para Geophysical Flows


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Atlantic meridional overturning circulation in two versions of the NEMO ¼° global ocean model has been compared with the RAPID transport array at 26oN. Both model versions reproduce the mean MOC strength well although the Florida Straits flows differ because the pathway of the Gulf Stream is not strongly constrained at this resolution. Both models however have a mean meridional heat transport of 1.07PW, much lower than the 1.35PW from RAPID observations in Apr04-Oct07. Much of the heat transport discrepancy is due to lower transports in summer across the MidOcean (Bahamas-Africa) section, due to stronger southward geostrophic flows in the top 100m where the water is warmest. Seasonal thermocline changes increase temperature differences across the basin driving stronger geostrophic shear, but this effect is much weaker in the top 100m of the RAPID velocity data. The effect accounts for a reduction of 1.1Sv in MOC and 0.1PW in heat transports. The rest of the discrepancy comes from lower Ekman transports from using ERAInterim winds instead of QuikSCAT, a smaller zonally-varying “Eddy” heat transport component, estimated from repeat XBT sections in the observations, and the southward throughflow in the model. Other differences in depth structure of the model MOC and RAPID observations are described but have much less impact on heat transports.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines thermally induced flows (or “snow breezes”) associated with snow cover in the boreal forests of Canada. Observations from a lake less than 4 km across were made as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) winter field campaign. These are interpreted with the aid of idealized three-dimensional mesoscale model simulations representing the forest-lake contrast. Typically, strong forest-lake temperature contrasts develop in the lowest 50 m of the atmosphere during the morning. The resulting pressure gradients induce low-level onshore wind components across the lake. This snow breeze persists into the afternoon provided that large-scale winds remain light. A characteristic snow breeze signature is clearly evident in wind observations averaged over 27 days of data, in agreement with model simulations. The study suggests that snow breezes will regularly develop over the many larger lakes and other unvegetated areas in the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Earth’s climate, as well as planetary climates in general, is broadly regulated by three fundamental parameters: the total solar irradiance, the planetary albedo and the planetary emissivity. Observations from series of different satellites during the last three decades indicate that these three quantities are generally very stable. The total solar irradiation of some 1,361 W/m2 at 1 A.U. varies within 1 W/m2 during the 11-year solar cycle (Fröhlich 2012). The albedo is close to 29 % with minute changes from year to year but with marked zonal differences (Stevens and Schwartz 2012). The only exception to the overall stability is a minor decrease in the planetary emissivity (the ratio between the radiation to space and the radiation from the surface of the Earth). This is a consequence of the increase in atmospheric greenhouse gas amounts making the atmosphere gradually more opaque to long-wave terrestrial radiation. As a consequence, radiation processes are slightly out of balance as less heat is leaving the Earth in the form of thermal radiation than the amount of heat from the incoming solar radiation. Present space-based systems cannot yet measure this imbalance, but the effect can be inferred from the increase in heat in the oceans where most of the heat accumulates. Minor amounts of heat are used to melt ice and to warm the atmosphere and the surface of the Earth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sufficient conditions are derived for the linear stability with respect to zonally symmetric perturbations of a steady zonal solution to the nonhydrostatic compressible Euler equations on an equatorial � plane, including a leading order representation of the Coriolis force terms due to the poleward component of the planetary rotation vector. A version of the energy–Casimir method of stability proof is applied: an invariant functional of the Euler equations linearized about the equilibrium zonal flow is found, and positive definiteness of the functional is shown to imply linear stability of the equilibrium. It is shown that an equilibrium is stable if the potential vorticity has the same sign as latitude and the Rayleigh centrifugal stability condition that absolute angular momentum increase toward the equator on surfaces of constant pressure is satisfied. The result generalizes earlier results for hydrostatic and incompressible systems and for systems that do not account for the nontraditional Coriolis force terms. The stability of particular equilibrium zonal velocity, entropy, and density fields is assessed. A notable case in which the effect of the nontraditional Coriolis force is decisive is the instability of an angular momentum profile that decreases away from the equator but is flatter than quadratic in latitude, despite its satisfying both the centrifugal and convective stability conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hamiltonian dynamics describes the evolution of conservative physical systems. Originally developed as a generalization of Newtonian mechanics, describing gravitationally driven motion from the simple pendulum to celestial mechanics, it also applies to such diverse areas of physics as quantum mechanics, quantum field theory, statistical mechanics, electromagnetism, and optics – in short, to any physical system for which dissipation is negligible. Dynamical meteorology consists of the fundamental laws of physics, including Newton’s second law. For many purposes, diabatic and viscous processes can be neglected and the equations are then conservative. (For example, in idealized modeling studies, dissipation is often only present for numerical reasons and is kept as small as possible.) In such cases dynamical meteorology obeys Hamiltonian dynamics. Even when nonconservative processes are not negligible, it often turns out that separate analysis of the conservative dynamics, which fully describes the nonlinear interactions, is essential for an understanding of the complete system, and the Hamiltonian description can play a useful role in this respect. Energy budgets and momentum transfer by waves are but two examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the characterization of the auroral substorm more than 40 years ago, controversy still surrounds the processes triggering substorm onset initiation. That stretching of the Earth's magnetotail following the addition of new nightside magnetic flux from dayside reconnection powers the substorm is well understood; the trigger for explosive energy release at substorm expansion phase onset is not. Using ground-based data sets with unprecedented combined spatial and temporal coverage, we report the discovery of new localized and contemporaneous magnetic wave and small azimuthal scale auroral signature of substorm onset. These local auroral arc undulations and magnetic field signatures rapidly evolve on second time scales for several minutes in advance of the release of the auroral surge. We also present evidence from a conjugate geosynchronous satellite of the concurrent magnetic onset in space as the onset of magnetic pulsations in the ionosphere, to within technique error. Throughout this time period, the more poleward arcs that correspond to the auroral oval which maps to the central plasma sheet remain undisturbed. There is good evidence that flows from the midtail crossing the plasma sheet can generate north-south auroral structures, yet no such auroral forms are seen in this event. Our observations present a severe challenge to the standard hypothesis that magnetic reconnection in stretched magnetotail fields triggers onset, indicating substorm expansion phase initiation occurs on field lines that are close to the Earth, as bounded by observations at geosynchronous orbit and in the conjugate ionosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy-Casimir stability method, also known as the Arnold stability method, has been widely used in fluid dynamical applications to derive sufficient conditions for nonlinear stability. The most commonly studied system is two-dimensional Euler flow. It is shown that the set of two-dimensional Euler flows satisfying the energy-Casimir stability criteria is empty for two important cases: (i) domains having the topology of the sphere, and (ii) simply-connected bounded domains with zero net vorticity. The results apply to both the first and the second of Arnold’s stability theorems. In the spirit of Andrews’ theorem, this puts a further limitation on the applicability of the method. © 2000 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arnol'd's second hydrodynamical stability theorem, proven originally for the two-dimensional Euler equations, can establish nonlinear stability of steady flows that are maxima of a suitably chosen energy-Casimir invariant. The usual derivations of this theorem require an assumption of zero disturbance circulation. In the present work an analogue of Arnol'd's second theorem is developed in the more general case of two-dimensional quasi-geostrophic flow, with the important feature that the disturbances are allowed to have non-zero circulation. New nonlinear stability criteria are derived, and explicit bounds are obtained on both the disturbance energy and potential enstrophy which are expressed in terms of the initial disturbance fields. While Arnol'd's stability method relies on the second variation of the energy-Casimir invariant being sign-definite, the new criteria can be applied to cases where the second variation is sign-indefinite because of the disturbance circulations. A version of Andrews' theorem is also established for this problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method is presented for obtaining rigorous upper bounds on the finite-amplitude growth of instabilities to parallel shear flows on the beta-plane. The method relies on the existence of finite-amplitude Liapunov (normed) stability theorems, due to Arnol'd, which are nonlinear generalizations of the classical stability theorems of Rayleigh and Fjørtoft. Briefly, the idea is to use the finite-amplitude stability theorems to constrain the evolution of unstable flows in terms of their proximity to a stable flow. Two classes of general bounds are derived, and various examples are considered. It is also shown that, for a certain kind of forced-dissipative problem with dissipation proportional to vorticity, the finite-amplitude stability theorems (which were originally derived for inviscid, unforced flow) remain valid (though they are no longer strictly Liapunov); the saturation bounds therefore continue to hold under these conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional derivations of available potential energy, in a variety of contexts, involve combining some form of mass conservation together with energy conservation. This raises the questions of why such constructions are required in the first place, and whether there is some general method of deriving the available potential energy for an arbitrary fluid system. By appealing to the underlying Hamiltonian structure of geophysical fluid dynamics, it becomes clear why energy conservation is not enough, and why other conservation laws such as mass conservation need to be incorporated in order to construct an invariant, known as the pseudoenergy, that is a positive‐definite functional of disturbance quantities. The available potential energy is just the non‐kinetic part of the pseudoenergy, the construction of which follows a well defined algorithm. Two notable features of the available potential energy defined thereby are first, that it is a locally defined quantity, and second, that it is inherently definable at finite amplitude (though one may of course always take the small‐amplitude limit if this is appropriate). The general theory is made concrete by systematic derivations of available potential energy in a number of different contexts. All the well known expressions are recovered, and some new expressions are obtained. The possibility of generalizing the concept of available potential energy to dynamically stable basic flows (as opposed to statically stable basic states) is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Andrews (1984) has shown that any flow satisfying Arnol'd's (1965, 1966) sufficient conditions for stability must be zonally-symmetric if the boundary conditions on the flow are zonally-symmetric. This result appears to place very strong restrictions on the kinds of flows that can be proved to be stable by Arnol'd's theorems. In this paper, Andrews’ theorem is re-examined, paying special attention to the case of an unbounded domain. It is shown that, in that case, Andrews’ theorem generally fails to apply, and Arnol'd-stable flows do exist that are not zonally-symmetric. The example of a circular vortex with a monotonic vorticity profile is a case in point. A proof of the finite-amplitude version of the Rayleigh stability theorem for circular vortices is also established; despite its similarity to the Arnol'd theorems it seems not to have been put on record before.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n a recent paper, Petroniet al. claim that a necessary condition for the instability of two-dimensional steady flows is a «double cascade» of energy and enstrophy respectively to larger and to smaller scales of motion. It is shown here that the analytical reasoning employed by Petroniet al. is flawed and that their conclusions are incorrect. What is true is that in any scale interaction (whether an instability or not), neither energy nor enstrophy can be transferred in one spectral direction only, but this result is extremely well known.