172 resultados para General linear models
Resumo:
The Atlantic thermohaline circulation (THC) is an important part of the earth's climate system. Previous research has shown large uncertainties in simulating future changes in this critical system. The simulated THC response to idealized freshwater perturbations and the associated climate changes have been intercompared as an activity of World Climate Research Program (WCRP) Coupled Model Intercomparison Project/Paleo-Modeling Intercomparison Project (CMIP/PMIP) committees. This intercomparison among models ranging from the earth system models of intermediate complexity (EMICs) to the fully coupled atmosphere-ocean general circulation models (AOGCMs) seeks to document and improve understanding of the causes of the wide variations in the modeled THC response. The robustness of particular simulation features has been evaluated across the model results. In response to 0.1-Sv (1 Sv equivalent to 10(6) ms(3) s(-1)) freshwater input in the northern North Atlantic, the multimodel ensemble mean THC weakens by 30% after 100 yr. All models simulate sonic weakening of the THC, but no model simulates a complete shutdown of the THC. The multimodel ensemble indicates that the surface air temperature could present a complex anomaly pattern with cooling south of Greenland and warming over the Barents and Nordic Seas. The Atlantic ITCZ tends to shift southward. In response to 1.0-Sv freshwater input, the THC switches off rapidly in all model simulations. A large cooling occurs over the North Atlantic. The annual mean Atlantic ITCZ moves into the Southern Hemisphere. Models disagree in terms of the reversibility of the THC after its shutdown. In general, the EMICs and AOGCMs obtain similar THC responses and climate changes with more pronounced and sharper patterns in the AOGCMs.
Resumo:
We develop the linearization of a semi-implicit semi-Lagrangian model of the one-dimensional shallow-water equations using two different methods. The usual tangent linear model, formed by linearizing the discrete nonlinear model, is compared with a model formed by first linearizing the continuous nonlinear equations and then discretizing. Both models are shown to perform equally well for finite perturbations. However, the asymptotic behaviour of the two models differs as the perturbation size is reduced. This leads to difficulties in showing that the models are correctly coded using the standard tests. To overcome this difficulty we propose a new method for testing linear models, which we demonstrate both theoretically and numerically. © Crown copyright, 2003. Royal Meteorological Society
Resumo:
A systematic modular approach to investigate the respective roles of the ocean and atmosphere in setting El Niño characteristics in coupled general circulation models is presented. Several state-of-the-art coupled models sharing either the same atmosphere or the same ocean are compared. Major results include 1) the dominant role of the atmosphere model in setting El Niño characteristics (periodicity and base amplitude) and errors (regularity) and 2) the considerable improvement of simulated El Niño power spectra—toward lower frequency—when the atmosphere resolution is significantly increased. Likely reasons for such behavior are briefly discussed. It is argued that this new modular strategy represents a generic approach to identifying the source of both coupled mechanisms and model error and will provide a methodology for guiding model improvement.
Resumo:
A positive salinity anomaly of 0.2 PSU was observed between 50 and 200 m over the years 2000–2001 across the Mozambique Channel at a section at 17°S which was repeated in 2003, 2005, 2006, and 2008. Meanwhile, a moored array is continued from 2003 to 2008. This anomaly was most distinct showing an interannual but nonseasonal variation. The possible origin of the anomaly is investigated using output from three ocean general circulation models (Estimating the Circulation and Climate of the Ocean, Ocean Circulation and Climate Advanced Modeling, and Parallel Ocean Program). The most probable mechanism for the salinity anomaly is the anomalous inflow of subtropical waters caused by a weakening of the northern part of the South Equatorial Current by weaker trade winds. This mechanism was found in all three numerical models. In addition, the numerical models indicate a possible salinization of one of the source water masses to the Mozambique Channel as an additional cause of the anomaly. The anomaly propagated southward into the Agulhas Current and northward along the African coast.
Resumo:
Snow properties have been retrieved from satellite data for many decades. While snow extent is generally felt to be obtained reliably from visible-band data, there is less confidence in the measurements of snow mass or water equivalent derived from passive microwave instruments. This paper briefly reviews historical passive microwave instruments and products, and compares the large-scale patterns from these sources to those of general circulation models and leading reanalysis products. Differences are seen to be large between the datasets, particularly over Siberia. A better understanding of the errors in both the model-based and measurement-based datasets is required to exploit both fully. Techniques to apply to the satellite measurements for improved large-scale snow data are suggested.
Resumo:
A powerful way to test the realism of ocean general circulation models is to systematically compare observations of passive tracer concentration with model predictions. The general circulation models used in this way cannot resolve a full range of vigorous mesoscale activity (on length scales between 10–100 km). In the real ocean, however, this activity causes important variability in tracer fields. Thus, in order to rationally compare tracer observations with model predictions these unresolved fluctuations (the model variability error) must be estimated. We have analyzed this variability using an eddy‐resolving reduced‐gravity model in a simple midlatitude double‐gyre configuration. We find that the wave number spectrum of tracer variance is only weakly sensitive to the distribution of (large scale slowly varying) tracer sources and sinks. This suggests that a universal passive tracer spectrum may exist in the ocean. We estimate the spectral shape using high‐resolution measurements of potential temperature on an isopycnal in the upper northeast Atlantic Ocean, finding a slope near k −1.7 between 10 and 500 km. The typical magnitude of the variance is estimated by comparing tracer simulations using different resolutions. For CFC‐ and tritium‐type transient tracers the peak magnitude of the model variability saturation error may reach 0.20 for scales shorter than 100 km. This is of the same order as the time mean saturation itself and well over an order of magnitude greater than the instrumental uncertainty.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
Previous attempts to apply statistical models, which correlate nutrient intake with methane production, have been of limited. value where predictions are obtained for nutrient intakes and diet types outside those. used in model construction. Dynamic mechanistic models have proved more suitable for extrapolation, but they remain computationally expensive and are not applied easily in practical situations. The first objective of this research focused on employing conventional techniques to generate statistical models of methane production appropriate to United Kingdom dairy systems. The second objective was to evaluate these models and a model published previously using both United Kingdom and North American data sets. Thirdly, nonlinear models were considered as alternatives to the conventional linear regressions. The United Kingdom calorimetry data used to construct the linear models also were used to develop the three. nonlinear alternatives that were ball of modified Mitscherlich (monomolecular) form. Of the linear models tested,, an equation from the literature proved most reliable across the full range of evaluation data (root mean square prediction error = 21.3%). However, the Mitscherlich models demonstrated the greatest degree of adaptability across diet types and intake level. The most successful model for simulating the independent data was a modified Mitscherlich equation with the steepness parameter set to represent dietary starch-to-ADF ratio (root mean square prediction error = 20.6%). However, when such data were unavailable, simpler Mitscherlich forms relating dry matter or metabolizable energy intake to methane production remained better alternatives relative to their linear counterparts.
Resumo:
A 2-year longitudinal survey was carried out to investigate factors affecting milk yield in crossbred cows on smallholder farms in and around an urban centre. Sixty farms were visited at approximately 2-week intervals and details of milk yield, body condition score (BCS) and heart girth measurements were collected. Fifteen farms were within the town (U), 23 farms were approximately 5 km from town (SU), and 22 farms approximately 10 km from town (PU). Sources of variation in milk yield were investigated using a general linear model by a stepwise forward selection and backward elimination approach to judge important independent variables. Factors considered for the first step of formulation of the model included location (PU, SU and U), calving season, BCS at calving, at 3 months postpartum and at 6 months postpartum, calving year, herd size category, source of labour (hired and family labour), calf rearing method (bucket and partial suckling) and parity number of the cow. Daily milk yield (including milk sucked by calves) was determined by calving year (p < 0.0001), calf rearing method (p = 0.044) and BCS at calving (p < 0.0001). Only BCS at calving contributed to variation in volume of milk sucked by the calf, lactation length and lactation milk yield. BCS at 3 months after calving was improved on farms where labour was hired (p = 0.041) and BCS change from calving to 6 months was more than twice as likely to be negative on U than SU and PU farms. It was concluded that milk production was predominantly associated with BCS at calving, lactation milk yield increasing quadratically from score 1 to 3. BCS at calving may provide a simple, single indicator of the nutritional status of a cow population.
Resumo:
A 2-year longitudinal survey was carried out to investigate factors affecting reproduction in crossbred cows on smallholder farms in and around an urban centre. Sixty farms were visited at approximately 2-week intervals and details of reproductive traits and body condition score (BCS) were collected. Fifteen farms were within the town (U), 23 farms were approximately 5 km from town (SU), and 22 farms approximately 10 km from town (PU). Sources of variation in reproductive traits were investigated using a general linear model (GLM) by a stepwise forward selection and backward elimination approach to judge important independent variables. Factors considered for the first step of formulation of the model included location (PU, SU and U), type of insemination, calving season, BCS at calving, at 3 months postpartum and at 6 months postpartum, calving year, herd size category, source of labour (hired and family labour), calf rearing method (bucket and partial suckling) and parity number of the cow. The effects of the independent variables identified were then investigated using a non-parametric survival technique. The number of days to first oestrus was increased on the U site (p = 0.045) and when family labour was used (p = 0.02). The non-parametric test confirmed the effect of site (p = 0.059), but effect of labour was not significant. The number of days from calving to conception was reduced by hiring labour (p = 0.003) and using natural service (p = 0.028). The non-parametric test confirmed the effects of type of insemination (p = 0.0001) while also identifying extended calving intervals on U and SU sites (p = 0.014). Labour source was again non-significant. Calving interval was prolonged on U and SU sites (p = 0.021), by the use of AI (p = 0.031) and by the use of family labour (p = 0.001). The non-parametric test confirmed the effect of site (p = 0.008) and insemination type (p > 0.0001) but not of labour source. It was concluded that under favourable conditions (PU site, hired labour and natural service) calving intervals of around 440 days could be achieved.
Resumo:
OBJECTIVES: This contribution provides a unifying concept for meta-analysis integrating the handling of unobserved heterogeneity, study covariates, publication bias and study quality. It is important to consider these issues simultaneously to avoid the occurrence of artifacts, and a method for doing so is suggested here. METHODS: The approach is based upon the meta-likelihood in combination with a general linear nonparametric mixed model, which lays the ground for all inferential conclusions suggested here. RESULTS: The concept is illustrated at hand of a meta-analysis investigating the relationship of hormone replacement therapy and breast cancer. The phenomenon of interest has been investigated in many studies for a considerable time and different results were reported. In 1992 a meta-analysis by Sillero-Arenas et al. concluded a small, but significant overall effect of 1.06 on the relative risk scale. Using the meta-likelihood approach it is demonstrated here that this meta-analysis is due to considerable unobserved heterogeneity. Furthermore, it is shown that new methods are available to model this heterogeneity successfully. It is argued further to include available study covariates to explain this heterogeneity in the meta-analysis at hand. CONCLUSIONS: The topic of HRT and breast cancer has again very recently become an issue of public debate, when results of a large trial investigating the health effects of hormone replacement therapy were published indicating an increased risk for breast cancer (risk ratio of 1.26). Using an adequate regression model in the previously published meta-analysis an adjusted estimate of effect of 1.14 can be given which is considerably higher than the one published in the meta-analysis of Sillero-Arenas et al. In summary, it is hoped that the method suggested here contributes further to a good meta-analytic practice in public health and clinical disciplines.
Resumo:
We argue that population modeling can add value to ecological risk assessment by reducing uncertainty when extrapolating from ecotoxicological observations to relevant ecological effects. We review other methods of extrapolation, ranging from application factors to species sensitivity distributions to suborganismal (biomarker and "-omics'') responses to quantitative structure activity relationships and model ecosystems, drawing attention to the limitations of each. We suggest a simple classification of population models and critically examine each model in an extrapolation context. We conclude that population models have the potential for adding value to ecological risk assessment by incorporating better understanding of the links between individual responses and population size and structure and by incorporating greater levels of ecological complexity. A number of issues, however, need to be addressed before such models are likely to become more widely used. In a science context, these involve challenges in parameterization, questions about appropriate levels of complexity, issues concerning how specific or general the models need to be, and the extent to which interactions through competition and trophic relationships can be easily incorporated.
Resumo:
A physically motivated statistical model is used to diagnose variability and trends in wintertime ( October - March) Global Precipitation Climatology Project (GPCP) pentad (5-day mean) precipitation. Quasi-geostrophic theory suggests that extratropical precipitation amounts should depend multiplicatively on the pressure gradient, saturation specific humidity, and the meridional temperature gradient. This physical insight has been used to guide the development of a suitable statistical model for precipitation using a mixture of generalized linear models: a logistic model for the binary occurrence of precipitation and a Gamma distribution model for the wet day precipitation amount. The statistical model allows for the investigation of the role of each factor in determining variations and long-term trends. Saturation specific humidity q(s) has a generally negative effect on global precipitation occurrence and with the tropical wet pentad precipitation amount, but has a positive relationship with the pentad precipitation amount at mid- and high latitudes. The North Atlantic Oscillation, a proxy for the meridional temperature gradient, is also found to have a statistically significant positive effect on precipitation over much of the Atlantic region. Residual time trends in wet pentad precipitation are extremely sensitive to the choice of the wet pentad threshold because of increasing trends in low-amplitude precipitation pentads; too low a choice of threshold can lead to a spurious decreasing trend in wet pentad precipitation amounts. However, for not too small thresholds, it is found that the meridional temperature gradient is an important factor for explaining part of the long-term trend in Atlantic precipitation.
Resumo:
Mathematical models have been vitally important in the development of technologies in building engineering. A literature review identifies that linear models are the most widely used building simulation models. The advent of intelligent buildings has added new challenges in the application of the existing models as an intelligent building requires learning and self-adjusting capabilities based on environmental and occupants' factors. It is therefore argued that the linearity is an impropriate basis for any model of either complex building systems or occupant behaviours for control or whatever purpose. Chaos and complexity theory reflects nonlinear dynamic properties of the intelligent systems excised by occupants and environment and has been used widely in modelling various engineering, natural and social systems. It is proposed that chaos and complexity theory be applied to study intelligent buildings. This paper gives a brief description of chaos and complexity theory and presents its current positioning, recent developments in building engineering research and future potential applications to intelligent building studies, which provides a bridge between chaos and complexity theory and intelligent building research.