104 resultados para Feedback imediato


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The traditional forcing-feedback framework has provided an indispensable basis for discussing global climate changes. However, as analysis of model behavior has become more detailed, shortcomings and ambiguities in the framework have become more evident and physical effects unaccounted for by the traditional framework have become interesting. In particular, the new concept of adjustments, which are responses to forcings that are not mediated by the global mean temperature, has emerged. This concept, related to the older ones of climate efficacy and stratospheric adjustment, is a more physical way of capturing unique responses to specific forcings. We present a pedagogical review of the adjustment concept, why it is important, and how it can be used. The concept is particularly useful for aerosols, where it helps to organize what has become a complex array of forcing mechanisms. It also helps clarify issues around cloud and hydrological response, transient vs. equilibrium climate change, and geoengineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast to prior studies showing a positive lapse-rate feedback associated with the Arctic inversion, Boé et al. reported that strong present-day Arctic temperature inversions are associated with stronger negative longwave feedbacks and thus reduced Arctic amplification in the model ensemble from phase 3 of the Coupled Model Intercomparison Project (CMIP3). A permutation test reveals that the relation between longwave feedbacks and inversion strength is an artifact of statistical self-correlation and that shortwave feedbacks have a stronger correlation with intermodel spread. The present comment concludes that the conventional understanding of a positive lapse-rate feedback associated with the Arctic inversion is consistent with the CMIP3 model ensemble.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feedback mechanism used in a brain-computer interface (BCI) forms an integral part of the closed-loop learning process required for successful operation of a BCI. However, ultimate success of the BCI may be dependent upon the modality of the feedback used. This study explores the use of music tempo as a feedback mechanism in BCI and compares it to the more commonly used visual feedback mechanism. Three different feedback modalities are compared for a kinaesthetic motor imagery BCI: visual, auditory via music tempo, and a combined visual and auditory feedback modality. Visual feedback is provided via the position, on the y-axis, of a moving ball. In the music feedback condition, the tempo of a piece of continuously generated music is dynamically adjusted via a novel music-generation method. All the feedback mechanisms allowed users to learn to control the BCI. However, users were not able to maintain as stable control with the music tempo feedback condition as they could in the visual feedback and combined conditions. Additionally, the combined condition exhibited significantly less inter-user variability, suggesting that multi-modal feedback may lead to more robust results. Finally, common spatial patterns are used to identify participant-specific spatial filters for each of the feedback modalities. The mean optimal spatial filter obtained for the music feedback condition is observed to be more diffuse and weaker than the mean spatial filters obtained for the visual and combined feedback conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cooperative communication networks, owing to the nodes' arbitrary geographical locations and individual oscillators, the system is fundamentally asynchronous. Such a timing mismatch may cause rank deficiency of the conventional space-time codes and, thus, performance degradation. One efficient way to overcome such an issue is the delay-tolerant space-time codes (DT-STCs). The existing DT-STCs are designed assuming that the transmitter has no knowledge about the channels. In this paper, we show how the performance of DT-STCs can be improved by utilizing some feedback information. A general framework for designing DT-STC with limited feedback is first proposed, allowing for flexible system parameters such as the number of transmit/receive antennas, modulated symbols, and the length of codewords. Then, a new design method is proposed by combining Lloyd's algorithm and the stochastic gradient-descent algorithm to obtain optimal codebook of STCs, particularly for systems with linear minimum-mean-square-error receiver. Finally, simulation results confirm the performance of the newly designed DT-STCs with limited feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous climate model simulations have shown that the configuration of the Earth's orbit during the early to mid-Holocene (approximately 10–5 kyr) can account for the generally warmer-than-present conditions experienced by the high latitudes of the northern hemisphere. New simulations for 6 kyr with two atmospheric/mixed-layer ocean models (Community Climate Model, version 1, CCMl, and Global ENvironmental and Ecological Simulation of Interactive Systems, version 2, GENESIS 2) are presented here and compared with results from two previous simulations with GENESIS 1 that were obtained with and without the albedo feedback due to climate-induced poleward expansion of the boreal forest. The climate model results are summarized in the form of potential vegetation maps obtained with the global BIOME model, which facilitates visual comparisons both among models and with pollen and plant macrofossil data recording shifts of the forest-tundra boundary. A preliminary synthesis shows that the forest limit was shifted 100–200 km north in most sectors. Both CCMl and GENESIS 2 produced a shift of this magnitude. GENESIS 1 however produced too small a shift, except when the boreal forest albedo feedback was included. The feedback in this case was estimated to have amplified forest expansion by approximately 50%. The forest limit changes also show meridional patterns (greatest expansion in central Siberia and little or none in Alaska and Labrador) which have yet to be reproduced by models. Further progress in understanding of the processes involved in the response of climate and vegetation to orbital forcing will require both the deployment of coupled atmosphere-biosphere-ocean models and the development of more comprehensive observational data sets

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increases in cloud optical depth and liquid water path (LWP) are robust features of global warming model simulations in high latitudes, yielding a negative shortwave cloud feedback, but the mechanisms are still uncertain. We assess the importance of microphysical processes for the negative optical depth feedback by perturbing temperature in the microphysics schemes of two aquaplanet models, both of which have separate prognostic equations for liquid water and ice. We find that most of the LWP increase with warming is caused by a suppression of ice microphysical processes in mixed-phase clouds, resulting in reduced conversion efficiencies of liquid water to ice and precipitation. Perturbing the temperature-dependent phase partitioning of convective condensate also yields a small LWP increase. Together, the perturbations in large-scale microphysics and convective condensate partitioning explain more than two-thirds of the LWP response relative to a reference case with increased SSTs, and capture all of the vertical structure of the liquid water response. In support of these findings, we show the existence of a very robust positive relationship between monthly-mean LWP and temperature in CMIP5 models and observations in mixed-phase cloud regions only. In models, the historical LWP sensitivity to temperature is a good predictor of the forced global warming response poleward of about 45°, although models appear to overestimate the LWP response to warming compared to observations. We conclude that in climate models, the suppression of ice-phase microphysical processes that deplete cloud liquid water is a key driver of the LWP increase with warming and of the associated negative shortwave cloud feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We quantify the effect of the snow-albedo feedback on Swiss spring temperature trends using daily temperature and snow depth measurements from six station pairs for the period 1961–2011. We show that the daily mean 2-m temperature of a spring day without snow cover is on average 0.4 °C warmer than one with snow cover at the same location. This estimate is comparable with estimates from climate modelling studies. Caused by the decreases in snow pack, the snow-albedo feedback amplifies observed temperature trends in spring. The influence is small and confined to areas around the upward-moving snow line in spring and early summer. For the 1961–2011 period, the related temperature trend increases are in the order of 3–7 % of the total observed trend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing optical depth poleward of 45° is a robust response to warming in global climate models. Much of this cloud optical depth increase has been hypothesized to be due to transitions from ice-dominated to liquid-dominated mixed-phase cloud. In this study, the importance of liquid-ice partitioning for the optical depth feedback is quantified for 19 Coupled Model Intercomparison Project Phase 5 models. All models show a monotonic partitioning of ice and liquid as a function of temperature, but the temperature at which ice and liquid are equally mixed (the glaciation temperature) varies by as much as 40 K across models. Models that have a higher glaciation temperature are found to have a smaller climatological liquid water path (LWP) and condensed water path and experience a larger increase in LWP as the climate warms. The ice-liquid partitioning curve of each model may be used to calculate the response of LWP to warming. It is found that the repartitioning between ice and liquid in a warming climate contributes at least 20% to 80% of the increase in LWP as the climate warms, depending on model. Intermodel differences in the climatological partitioning between ice and liquid are estimated to contribute at least 20% to the intermodel spread in the high-latitude LWP response in the mixed-phase region poleward of 45°S. It is hypothesized that a more thorough evaluation and constraint of global climate model mixed-phase cloud parameterizations and validation of the total condensate and ice-liquid apportionment against observations will yield a substantial reduction in model uncertainty in the high-latitude cloud response to warming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To introduce a new approach to problem based learning (PBL) used in the context of medicinal chemistry practical class teaching pharmacy students. Design: The described chemistry practical is based on independent studies by small groups of undergraduate students (4-5), who design their own practical work taking relevant professional standards into account. Students are carefully guided by feedback and acquire a set of skills important to their future profession as healthcare professionals. This model has been tailored to the application of PBL in a chemistry practical class setting for a large student cohort (150 students). Assessment: The achievement of learning outcomes is based on the submission of relevant documentation including a certificate of analysis, in addition to peer assessment. Some of the learning outcomes are also assessed in the final written examination at the end of the academic year. Conclusion: The described design of a novel PBL chemistry laboratory course for pharmacy students has been found to be successful. Self-reflective learning and engagement with feedback were encouraged, and students enjoyed the challenging learning experience. Skills that are highly essential for the students’ future careers as healthcare professionals are promoted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A body of research suggests that the provision of energy feedback information to building users can elicit significant energy reductions through behaviour change. However, most studies have focused on energy use in homes and the assessment of interventions and technologies, to the neglect of the non-domestic context and broader issues arising from the introduction of feedback technologies. To address this gap, a non-domestic case study explores the delivery of personalized energy feedback to office workers through a novel system utilizing wireless technologies. The research demonstrates advantages of monitoring occupancy and quantifying energy use from specific behaviours as a basis for effective energy feedback; this is particularly important where there are highly disaggregated forms of energy use and a range of locations for that activity to take place. Quantitative and qualitative data show that personalized feedback can help individuals identify energy reduction opportunities. However, the analysis also highlights important contextual barriers and issues that need to be addressed when utilizing feedback technologies in the workplace. If neglected, these issues may limit the effective take-up of feedback interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exploiting the observed robust relationships between temperature and optical depth in extratropical clouds, we calculate the shortwave cloud feedback from historical data, by regressing observed and modeled cloud property histograms onto local temperature in middle to high southern latitudes. In this region, all CMIP5 models and observational data sets predict a negative cloud feedback, mainly driven by optical thickening. Between 45° and 60°S, the mean observed shortwave feedback (−0.91 ± 0.82 W m−2 K−1, relative to local rather than global mean warming) is very close to the multimodel mean feedback in RCP8.5 (−0.98 W m−2 K−1), despite differences in the meridional structure. In models, historical temperature-cloud property relationships reliably predict the forced RCP8.5 response. Because simple theory predicts this optical thickening with warming, and cloud amount changes are relatively small, we conclude that the shortwave cloud feedback is very likely negative in the real world at middle to high latitudes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trust and reputation are important factors that influence the success of both traditional transactions in physical social networks and modern e-commerce in virtual Internet environments. It is difficult to define the concept of trust and quantify it because trust has both subjective and objective characteristics at the same time. A well-reported issue with reputation management system in business-to-consumer (BtoC) e-commerce is the “all good reputation” problem. In order to deal with the confusion, a new computational model of reputation is proposed in this paper. The ratings of each customer are set as basic trust score events. In addition, the time series of massive ratings are aggregated to formulate the sellers’ local temporal trust scores by Beta distribution. A logical model of trust and reputation is established based on the analysis of the dynamical relationship between trust and reputation. As for single goods with repeat transactions, an iterative mathematical model of trust and reputation is established with a closed-loop feedback mechanism. Numerical experiments on repeated transactions recorded over a period of 24 months are performed. The experimental results show that the proposed method plays guiding roles for both theoretical research into trust and reputation and the practical design of reputation systems in BtoC e-commerce.