222 resultados para Expansion (Heat)
Resumo:
We present simulations of London's meteorology using the Met Office Unified Model with a new, sophisticated surface energy-balance scheme to represent the urban surfaces, called MORUSES. Simulations are performed with the urban surfaces represented and with the urban surfaces replaced with grass in order to calculate the urban increment on the local meteorology. The local urban effects were moderated to some extent by the passage of an onshore flow that propagated up the Thames estuary and across the city, cooling London slightly in the afternoon. Validations of screen-level temperature show encouraging agreement to within 1–2 K, when the urban increment is up to 5 K. The model results are then used to examine factors shaping the spatial and temporal structure of London's atmospheric boundary layer. The simulations reconcile the differences in the temporal evolution of the urban heat island (UHI) shown in various studies and demonstrate that the variation of UHI with time depends strongly on the urban fetch. The UHI at a location downwind of the city centre shows a decrease in UHI during the night, while the UHI at the city centre stays constant. Finally, the UHI at a location upwind of the city centre increases continuously. The magnitude of the UHI by the time of the evening transition increases with urban fetch. The urban increments are largest at night, when the boundary layer is shallow. The boundary layer experiences continued warming after sunset, as the heat from the urban fabric is released, and a weakly convective boundary layer develops across the city. The urban land-use fraction is the dominant control on the spatial structure in the sensible heat flux and the resulting urban increment, although even the weak advection present in this case study is sufficient to advect the peak temperature increments downwind of the most built-up areas. Copyright © 2011 Royal Meteorological Society and British Crown Copyright, the Met Office
Resumo:
In this paper we undertake a preliminary assessment of the regional planning and development implications of BAA Stansted Airport’s planning permission to grow to 25 million passengers per annum (mppa) by 2010. Our concern is not simply to consider the overall growth of the airport on the airport site itself but the nature and type of growth both on- and off-site. In this document we focus on the submitted planning permission documents and test them. The methodology we employed was to draw on published and unpublished numerical estimates of the airport’s growth – particularly including estimates produced by the airport owner, BAA, and their economic and planning consultants DTZ Pieda - and critically, and systematically analyse their figures. We adopted this approach because unless the figures which were employed in the initial calculations were correct then all of the subsequent projections which flow from them - and the polices which could then be based on them – could be flawed. The analysis is divided into two parts – firstly, are the growth forecasts correct?; and secondly, what do these forecasts actually mean in developmental terms? In effect, what we have done is to produce a critique of the existing body of evidence by questioning underpinning assumptions and then draw some preliminary conclusions for the region based on this analysis. A major focus of this report has been analyse the figures involved in the planning application to expand Stansted to 25mppa. Ironically, one of our key findings, that the local impact of Stansted’s proposed expansion in employment terms might well be less than was originally thought, might make it easier to gain the acceptance of the relevant local authorities involved to allow the development to take place. Our main overall findings are that the BAA projections over-estimate the local employment impact of the airport’s proposed growth and under-estimate its potential regional ‘transportation’ employment effect. These two findings are, of course, related to each other in important ways, and we also feel that they have potentially significant medium and long-term economic, competitiveness and planning policy implications for the East of England region
Resumo:
Biomass allocation to above- and belowground compartments in trees is thought to be affected by growth conditions. To assess the strength of such influences, we sampled six Norway spruce forest stands growing at higher altitudes. Within these stands, we randomly selected a total of 77 Norway spruce trees and measured volume and biomass of stem, above- and belowground stump and all roots over 0.5 cm diameter. A comparison of our observations with models parameterised for lower altitudes shows that models developed for specific conditions may be applicable to other locations. Using our observations, we developed biomass functions (BF) and biomass conversion and expansion factors (BCEF) linking belowground biomass to stem parameters. While both BF and BCEF are accurate in belowground biomass predictions, using BCEF appears more promising as such factors can be readily used with existing forest inventory data to obtain estimates of belowground biomass stock. As an example, we show how BF and BCEF developed for individual trees can be used to estimate belowground biomass at the stand level. In combination with existing aboveground models, our observations can be used to quantify total standing biomass of high altitude Norway spruce stands.
Resumo:
Leaf expansion in the fast-growing tree,Populus × euramericana was stimulated by elevated [CO2] in a closed-canopy forest plantation, exposed using a free air CO2 enrichment technique enabling long-term experimentation in field conditions. The effects of elevated [CO2] over time were characterized and related to the leaf plastochron index (LPI), and showed that leaf expansion was stimulated at very early (LPI, 0–3) and late (LPI, 6–8) stages in development. Early and late effects of elevated [CO2] were largely the result of increased cell expansion and increased cell production, respectively. Spatial effects of elevated [CO2] were also marked and increased final leaf size resulted from an effect on leaf area, but not leaf length, demonstrating changed leaf shape in response to [CO2]. Leaves exhibited a basipetal gradient of leaf development, investigated by defining seven interveinal areas, with growth ceasing first at the leaf tip. Interestingly, and in contrast to other reports, no spatial differences in epidermal cell size were apparent across the lamina, whereas a clear basipetal gradient in cell production rate was found. These data suggest that the rate and timing of cell production was more important in determining leaf shape, given the constant cell size across the leaf lamina. The effect of elevated [CO2] imposed on this developmental gradient suggested that leaf cell production continued longer in elevated [CO2] and that basal increases in cell production rate were also more important than altered cell expansion for increased final leaf size and altered leaf shape in elevated [CO2].
Resumo:
The thermal performance of a horizontal-coupled ground-source heat pump system has been assessed both experimentally and numerically in a UK climate. A numerical simulation of thermal behaviour of the horizontal-coupled heat exchanger for combinations of different ambient air temperatures, wind speeds, refrigerant temperature and soil thermal properties was studied using a validated 2D transient model. The specific heat extraction by the heat exchanger increased with ambient temperature and soil thermal conductivity, however it decreased with increasing refrigerant temperature. The effect of wind speed was negligible.
Resumo:
We investigate the Arctic basin circulation, freshwater content (FWC) and heat budget by using a high-resolution global coupled ice–ocean model implemented with a state-of-the-art data assimilation scheme. We demonstrate that, despite a very sparse dataset, by assimilating hydrographic data in and near the Arctic basin, the initial warm bias and drift in the control run is successfully corrected, reproducing a much more realistic vertical and horizontal structure to the cyclonic boundary current carrying the Atlantic Water (AW) along the Siberian shelves in the reanalysis run. The Beaufort Gyre structure and FWC and variability are also more accurately reproduced. Small but important changes in the strait exchange flows are found which lead to more balanced budgets in the reanalysis run. Assimilation fluxes dominate the basin budgets over the first 10 years (P1: 1987–1996) of the reanalysis for both heat and FWC, after which the drifting Arctic upper water properties have been restored to realistic values. For the later period (P2: 1997–2004), the Arctic heat budget is almost balanced without assimilation contributions, while the freshwater budget shows reduced assimilation contributions compensating largely for surface salinity damping, which was extremely strong in this run. A downward trend in freshwater export at the Canadian Straits and Fram Strait is found in period P2, associated with Beaufort Gyre recharge. A detailed comparison with observations and previous model studies at the individual Arctic straits is also included.
Resumo:
This study presents the findings of applying a Discrete Demand Side Control (DDSC) approach to the space heating of two case study buildings. High and low tolerance scenarios are implemented on the space heating controller to assess the impact of DDSC upon buildings with different thermal capacitances, light-weight and heavy-weight construction. Space heating is provided by an electric heat pump powered from a wind turbine, with a back-up electrical network connection in the event of insufficient wind being available when a demand occurs. Findings highlight that thermal comfort is maintained within an acceptable range while the DDSC controller maintains the demand/supply balance. Whilst it is noted that energy demand increases slightly, as this is mostly supplied from the wind turbine, this is of little significance and hence a reduction in operating costs and carbon emissions is still attained.
Resumo:
The stannylene [SnR2] (R = CH(SiMe3)2) reacts in different ways with the three dodecacarbonyls of the iron triad: [Fe3(CO)12] gives [Fe2(CO)8(μ-SnR2)], [Ru3(CO)12] gives the planar pentametallic cluster [Ru3(CO)10(μ-SnR2)2], for which a full structural analysis is reported, while [Os3(CO)12] fails to react. Different products are also obtained from three nitrile derivatives: [Fe3-(CO)11(MeCN)] gives [Fe2(CO)6(μ-SnR2)2], which has a structure significantly different from that of known Fe2Sn2 clusters, [Ru3(CO)10(MeCN)2] gives the pentametallic cluster described above, while [Os3(CO)10(MeCN)2] gives the isostructural osmium analogue, which shows the unusual feature of a CO group bridging two osmium atoms.
Resumo:
Cluster expansion of [Os3H2(CO)10] with [SnR2][R = CH(SiMe3)2] take place in high yield to give [Os3SnH2(CO)10R2], the first closed triosmium–main-group metal cluster to be structurally characterized; a novel feature is the presence of a hydrogen atom bridging the tin atom and one of the osmium atoms.
Resumo:
Self-pollination dominates in wheat , with a small level of out-crossing due to flowering asynchrony and male sterility. However, the timing and synchrony of male and female flowering in wheat is a crucial determinant of seed set and may be an important factor affecting gene flow and resilience to climate change. Here, a methodology is presented for assessing the timing and synchrony of flowering in wheat. From the onset of flowering until the end of anthesis, the anther and stigma activity of each floret was assessed on the first five developing ears in potted plants grown under ambient conditions and originating from cv Paragon or cvs Spark-Rialto backgrounds. At harvest maturity, seed presence, size and weight was recorded for each floret scored. The synchrony between pollen dehiscence and stigma collapse within a flower was dependent on its relative position in a spike and within a floret. Determined on the basis of synchrony within each flower, the level of pollination by pollen originating from other flowers reached approximately 30% and did not change throughout the duration of flowering. A modelling exercise parameterised by flowering observations indicated that the temporal and spatial variability of anther activity within and between spikes may influence the relative resilience of wheat to sudden, extreme climatic events which has direct relevance to predicted future climate scenarios in the UK.
Resumo:
Goatmilk with and without stabilizing salt was subjected to in-container and UHTsterilization. Heatstability was assessed by measuring the amount of sediment in the milk. Without stabilizing salts, goatmilk usually produced less sediment when subjected to in-containersterilization compared with UHT processing. Addition of stabilizing salts up to 12.8 mM resulted in a progressive increase in sediment for in-containersterilization. In contrast, adding stabilizing salts at 6.4 mM initially reduced sediment formation in UHT-treated milk but addition of stabilizing salts at 12.8 mM increased sediment formation. Adding stabilizing salts to goatmilk increased pH, decreased ionic calcium, and increased ethanol stability. Adding up to 2 mM calcium chloride increased sediment formation more after UHT treatment than after in-containersterilization. These results suggest that no single mechanism or set of reactions causes milk to produce sediment during heating and that the favored pathway is different for UHT and in-containersterilization processes. Poor heatstability could be induced both by increasing ionic calcium and by decreasing it. Ethanol stability is not a good indicator of heatstability for in-containersterilization, but it may be for UHTsterilization, if milk does not enter the region of poor heatstability found at low concentrations of ionic calcium.