172 resultados para Emerging Modelling Paradigms and Model Coupling
Resumo:
Reaction of salicylaldehyde semicarbazone (L-1), 2-hydroxyacetophenone semicarbazone (L-2), and 2-hydroxynaphthaldehyde semicarbazone (L-3) with [Pd(PPh3)(2)Cl-2] in ethanol in the presence of a base (NEt3) affords a family of yellow complexes (1a, 1b and 1c, respectively). In these complexes the semicarbazone ligands are coordinated to palladium in a rather unusual tridentate ONN-mode, and a PPh3 also remains coordinated to the metal center. Crystal structures of the 1b and 1c complexes have been determined, and structure of 1a has been optimized by a DFT method. In these complexes two potential donor sites of the coordinated semicarbazone, viz. the hydrazinic nitrogen and carbonylic oxygen, remain unutilized. Further reaction of these palladium complexes (1a, 1b and 1c) with [Ru(PPh3)(2)(CO)(2)Cl-2] yields a family of orange complexes (2a, 2b and 2c, respectively). In these heterodinuclear (Pd-Ru) complexes, the hydrazinic nitrogen (via dissociation of the N-H proton) and the carbonylic oxygen from the palladium-containing fragment bind to the ruthenium center by displacing a chloride and a carbonyl. Crystal structures of 2a and 2c have been determined, and the structure of 2b has been optimized by a DFT method. All the complexes show characteristic H-1 NMR spectra and, intense absorptions in the visible and ultraviolet region. Cyclic voltammetry on all the complexes shows an irreversible oxidation of the coordinated semicarbazone within 0.86-0.93 V vs. SCE, and an irreversible reduction of the same ligand within -0.96 to -1.14 V vs. SCE. Both the mononuclear (1a, 1b and 1c) and heterodinuclear (2a, 2b and 2c) complexes are found to efficiently catalyze Suzuki, Heck and Sonogashira type C-C coupling reactions utilizing a variety of aryl bromides and aryl chlorides. The Pd-Ru complexes (2a, 2b and 2c) are found to be better catalysts than the Pd complexes (1a, 1b and 1c) for Suzuki and Heck coupling reactions.
Resumo:
The internal variability and coupling between the stratosphere and troposphere in CCMVal‐2 chemistry‐climate models are evaluated through analysis of the annular mode patterns of variability. Computation of the annular modes in long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The spatial and temporal structure of the models’ annular modes is then compared with that of reanalyses. As a whole, the models capture the key features of observed intraseasonal variability, including the sharp vertical gradients in structure between stratosphere and troposphere, the asymmetries in the seasonal cycle between the Northern and Southern hemispheres, and the coupling between the polar stratospheric vortices and tropospheric midlatitude jets. It is also found that the annular mode variability changes little in time throughout simulations of the 21st century. There are, however, both common biases and significant differences in performance in the models. In the troposphere, the annular mode in models is generally too persistent, particularly in the Southern Hemisphere summer, a bias similar to that found in CMIP3 coupled climate models. In the stratosphere, the periods of peak variance and coupling with the troposphere are delayed by about a month in both hemispheres. The relationship between increased variability of the stratosphere and increased persistence in the troposphere suggests that some tropospheric biases may be related to stratospheric biases and that a well‐simulated stratosphere can improve simulation of tropospheric intraseasonal variability.
Resumo:
A necessary condition for a good probabilistic forecast is that the forecast system is shown to be reliable: forecast probabilities should equal observed probabilities verified over a large number of cases. As climate change trends are now emerging from the natural variability, we can apply this concept to climate predictions and compute the reliability of simulated local and regional temperature and precipitation trends (1950–2011) in a recent multi-model ensemble of climate model simulations prepared for the Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5). With only a single verification time, the verification is over the spatial dimension. The local temperature trends appear to be reliable. However, when the global mean climate response is factored out, the ensemble is overconfident: the observed trend is outside the range of modelled trends in many more regions than would be expected by the model estimate of natural variability and model spread. Precipitation trends are overconfident for all trend definitions. This implies that for near-term local climate forecasts the CMIP5 ensemble cannot simply be used as a reliable probabilistic forecast.
Resumo:
Accelerated climate change affects components of complex biological interactions differentially, often causing changes that are difficult to predict. Crop yield and quality are affected by climate change directly, and indirectly, through diseases that themselves will change but remain important. These effects are difficult to dissect and model as their mechanistic bases are generally poorly understood. Nevertheless, a combination of integrated modelling from different disciplines and multi-factorial experimentation will advance our understanding and prioritisation of the challenges. Food security brings in additional socio-economic, geographical and political factors. Enhancing resilience to the effects of climate change is important for all these systems and functional diversity is one of the most effective targets for improved sustainability.
Resumo:
Business process modelling can help an organisation better understand and improve its business processes. Most business process modelling methods adopt a task- or activity-based approach to identifying business processes. Within our work, we use activity theory to categorise elements within organisations as being either human beings, activities or artefacts. Due to the direct relationship between these three elements, an artefact-oriented approach to organisation analysis emerges. Organisational semiotics highlights the ontological dependency between affordances within an organisation. We analyse the ontological dependency between organisational elements, and therefore produce the ontology chart for artefact-oriented business process modelling in order to clarify the relationship between the elements of an organisation. Furthermore, we adopt the techniques from semantic analysis and norm analysis, of organisational semiotics, to develop the artefact-oriented method for business process modelling. The proposed method provides a novel perspective for identifying and analysing business processes, as well as agents and artefacts, as the artefact-oriented perspective demonstrates the fundamental flow of an organisation. The modelling results enable an organisation to understand and model its processes from an artefact perspective, viewing an organisation as a network of artefacts. The information and practice captured and stored in artefact can also be shared and reused between organisations that produce similar artefacts.
Resumo:
During a series of 8 measurement campaigns within the SPURT project (2001-2003), vertical profiles of CO and O3 have been obtained at subtropical, middle and high latitudes over western Europe, covering the troposphere and lowermost stratosphere up to ~14 km altitude during all seasons. The seasonal and latitudinal variation of the measured trace gas profiles are compared to simulations with the chemical transport model MATCH. In the troposphere reasonable agreement between observations and model predictions is achieved for CO and O3, in particular at subtropical and mid-latitudes, while the model overestimates (underestimates) CO (O3 in the lowermost stratosphere particularly at high latitudes, indicating too strong simulated bi-directional exchange across the tropopause. By the use of tagged tracers in the model, long-range transport of Asian air masses is identified as the dominant source of CO pollution over Europe in the free troposphere.
Resumo:
•In current models, the ecophysiological effects of CO2 create both woody thickening and terrestrial carbon uptake, as observed now, and forest cover and terrestrial carbon storage increases that took place after the last glacial maximum (LGM). Here, we aimed to assess the realism of modelled vegetation and carbon storage changes between LGM and the pre-industrial Holocene (PIH). •We applied Land Processes and eXchanges (LPX), a dynamic global vegetation model (DGVM), with lowered CO2 and LGM climate anomalies from the Palaeoclimate Modelling Intercomparison Project (PMIP II), and compared the model results with palaeodata. •Modelled global gross primary production was reduced by 27–36% and carbon storage by 550–694 Pg C compared with PIH. Comparable reductions have been estimated from stable isotopes. The modelled areal reduction of forests is broadly consistent with pollen records. Despite reduced productivity and biomass, tropical forests accounted for a greater proportion of modelled land carbon storage at LGM (28–32%) than at PIH (25%). •The agreement between palaeodata and model results for LGM is consistent with the hypothesis that the ecophysiological effects of CO2 influence tree–grass competition and vegetation productivity, and suggests that these effects are also at work today.
Resumo:
A global aerosol transport model (Oslo CTM2) with main aerosol components included is compared to five satellite retrievals of aerosol optical depth (AOD) and one data set of the satellite-derived radiative effect of aerosols. The model is driven with meteorological data for the period November 1996 to June 1997 which is the time period investigated in this study. The modelled AOD is within the range of the AOD from the various satellite retrievals over oceanic regions. The direct radiative effect of the aerosols as well as the atmospheric absorption by aerosols are in both cases found to be of the order of 20 Wm−2 in certain regions in both the satellite-derived and the modelled estimates as a mean over the period studied. Satellite and model data exhibit similar patterns of aerosol optical depth, radiative effect of aerosols, and atmospheric absorption of the aerosols. Recently published results show that global aerosol models have a tendency to underestimate the magnitude of the clear-sky direct radiative effect of aerosols over ocean compared to satellite-derived estimates. However, this is only to a small extent the case with the Oslo CTM2. The global mean direct radiative effect of aerosols over ocean is modelled with the Oslo CTM2 to be –5.5 Wm−2 and the atmospheric aerosol absorption 1.5 Wm−2.
Resumo:
Initial results are presented from a middle atmosphere extension to a version of the European Centre For Medium Range Weather Forecasting tropospheric model. The extended version of the model has been developed as part of the UK Universities Global Atmospheric Modelling Project and extends from the ground to approximately 90 km. A comprehensive solar radiation scheme is included which uses monthly averaged climatological ozone values. A linearised infrared cooling scheme is employed. The basic climatology of the model is described; the parametrization of drag due to orographically forced gravity waves is shown to have a dramatic effect on the simulations of the winter hemisphere.
Resumo:
The semi-distributed, dynamic INCA-N model was used to simulate the behaviour of dissolved inorganic nitrogen (DIN) in two Finnish research catchments. Parameter sensitivity and model structural uncertainty were analysed using generalized sensitivity analysis. The Mustajoki catchment is a forested upstream catchment, while the Savijoki catchment represents intensively cultivated lowlands. In general, there were more influential parameters in Savijoki than Mustajoki. Model results were sensitive to N-transformation rates, vegetation dynamics, and soil and river hydrology. Values of the sensitive parameters were based on long-term measurements covering both warm and cold years. The highest measured DIN concentrations fell between minimum and maximum values estimated during the uncertainty analysis. The lowest measured concentrations fell outside these bounds, suggesting that some retention processes may be missing from the current model structure. The lowest concentrations occurred mainly during low flow periods; so effects on total loads were small.
Resumo:
In addition to CO2, the climate impact of aviation is strongly influenced by non-CO2 emissions, such as nitrogen oxides, influencing ozone and methane, and water vapour, which can lead to the formation of persistent contrails in ice-supersaturated regions. Because these non-CO2 emission effects are characterised by a short lifetime, their climate impact largely depends on emission location and time; that is to say, emissions in certain locations (or times) can lead to a greater climate impact (even on the global average) than the same emission in other locations (or times). Avoiding these climate-sensitive regions might thus be beneficial to climate. Here, we describe a modelling chain for investigating this climate impact mitigation option. This modelling chain forms a multi-step modelling approach, starting with the simulation of the fate of emissions released at a certain location and time (time-region grid points). This is performed with the chemistry–climate model EMAC, extended via the two submodels AIRTRAC (V1.0) and CONTRAIL (V1.0), which describe the contribution of emissions to the composition of the atmosphere and to contrail formation, respectively. The impact of emissions from the large number of time-region grid points is efficiently calculated by applying a Lagrangian scheme. EMAC also includes the calculation of radiative impacts, which are, in a second step, the input to climate metric formulas describing the global climate impact of the emission at each time-region grid point. The result of the modelling chain comprises a four-dimensional data set in space and time, which we call climate cost functions and which describes the global climate impact of an emission at each grid point and each point in time. In a third step, these climate cost functions are used in an air traffic simulator (SAAM) coupled to an emission tool (AEM) to optimise aircraft trajectories for the North Atlantic region. Here, we describe the details of this new modelling approach and show some example results. A number of sensitivity analyses are performed to motivate the settings of individual parameters. A stepwise sanity check of the results of the modelling chain is undertaken to demonstrate the plausibility of the climate cost functions.
Resumo:
Many human behaviours and pathologies have been attributed to the putative mirror neuron system, a neural system that is active during both the observation and execution of actions. While there are now a very large number of papers on the mirror neuron system, variations in the methods and analyses employed by researchers mean that the basic characteristics of the mirror response are not clear. This review focuses on three important aspects of the mirror response, as measured by modulations in corticospinal excitability: (1) muscle specificity, (2) direction, and (3) timing of modulation. We focus mainly on electromyographic (EMG) data gathered following single-pulse transcranial magnetic stimulation (TMS), because this method provides precise information regarding these three aspects of the response. Data from paired-pulse TMS paradigms and peripheral nerve stimulation (PNS) are also considered when we discuss the possible mechanisms underlying the mirror response. In this systematic review of the literature, we examine the findings of 85 TMS and PNS studies of the human mirror response, and consider the limitations and advantages of the different methodological approaches these have adopted in relation to discrepancies between their findings. We conclude by proposing a testable model of how action observation modulates corticospinal excitability in humans. Specifically, we propose that action observation elicits an early, non-specific facilitation of corticospinal excitability (at around 90 ms from action onset), followed by a later modulation of activity specific to the muscles involved in the observed action (from around 200 ms). Testing this model will greatly advance our understanding of the mirror mechanism and provide a more stable grounding on which to base inferences about its role in human behaviour.
Resumo:
When studying hydrological processes with a numerical model, global sensitivity analysis (GSA) is essential if one is to understand the impact of model parameters and model formulation on results. However, different definitions of sensitivity can lead to a difference in the ranking of importance of the different model factors. Here we combine a fuzzy performance function with different methods of calculating global sensitivity to perform a multi-method global sensitivity analysis (MMGSA). We use an application of a finite element subsurface flow model (ESTEL-2D) on a flood inundation event on a floodplain of the River Severn to illustrate this new methodology. We demonstrate the utility of the method for model understanding and show how the prediction of state variables, such as Darcian velocity vectors, can be affected by such a MMGSA. This paper is a first attempt to use GSA with a numerically intensive hydrological model.
Resumo:
It is becoming increasingly important that we can understand and model flow processes in urban areas. Applications such as weather forecasting, air quality and sustainable urban development rely on accurate modelling of the interface between an urban surface and the atmosphere above. This review gives an overview of current understanding of turbulence generated by an urban surface up to a few building heights, the layer called the roughness sublayer (RSL). High quality datasets are also identified which can be used in the development of suitable parameterisations of the urban RSL. Datasets derived from physical and numerical modelling, and full-scale observations in urban areas now exist across a range of urban-type morphologies (e.g. street canyons, cubes, idealised and realistic building layouts). Results show that the urban RSL depth falls within 2 – 5 times mean building height and is not easily related to morphology. Systematic perturbations away from uniform layouts (e.g. varying building heights) have a significant impact on RSL structure and depth. Considerable fetch is required to develop an overlying inertial sublayer, where turbulence is more homogeneous, and some authors have suggested that the “patchiness” of urban areas may prevent inertial sublayers from developing at all. Turbulence statistics suggest similarities between vegetation and urban canopies but key differences are emerging. There is no consensus as to suitable scaling variables, e.g. friction velocity above canopy vs. square root of maximum Reynolds stress, mean vs. maximum building height. The review includes a summary of existing modelling practices and highlights research priorities.
Resumo:
When studying hydrological processes with a numerical model, global sensitivity analysis (GSA) is essential if one is to understand the impact of model parameters and model formulation on results. However, different definitions of sensitivity can lead to a difference in the ranking of importance of the different model factors. Here we combine a fuzzy performance function with different methods of calculating global sensitivity to perform a multi-method global sensitivity analysis (MMGSA). We use an application of a finite element subsurface flow model (ESTEL-2D) on a flood inundation event on a floodplain of the River Severn to illustrate this new methodology. We demonstrate the utility of the method for model understanding and show how the prediction of state variables, such as Darcian velocity vectors, can be affected by such a MMGSA. This paper is a first attempt to use GSA with a numerically intensive hydrological model