130 resultados para Dominant plants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A deeper understanding of random markers is important if they are to be employed for a range of objectives. The sequence specific amplified polymorphism (S-SAP) technique is a powerful genetic analysis tool which exploits the high copy number of retrotransposon long terminal repeats (LTRs) in the plant genome. The distribution and inheritance of S-SAP bands in the barley genome was studied using the Steptoe × Morex (S × M) double haploid (DH) population. Six S-SAP primer combinations generated 98 polymorphic bands, and map positions were assigned to all but one band. Eight putative co-dominant loci were detected, representing 16 of the mapped markers. Thus at least 81 of the mapped S-SAP loci were dominant. The markers were distributed along all of the seven chromosomes and a tendency to cluster was observed. The distribution of S-SAP markers over the barley genome concurred with the knowledge of the high copy number of retrotransposons in plants. This experiment has demonstrated the potential for the S-SAP technique to be applied in a range of analyses such as genetic fingerprinting, marker assisted breeding, biodiversity assessment and phylogenetic analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of nitrification potentials, denitrification potentials, and N removal efficiency to the introduction of earthworms and wetland plants in a vertical flow constructed wetland system was investigated. Addition of earthworms increased nitrification and denitrification potentials of substrate in non-vegetated constructed wetland by 236% and 8%, respectively; it increased nitrification and denitrification potentials in rhizosphere in vegetated constructed wetland (Phragmites austrail, Typha augustifolia and Canna indica), 105% and 5%, 187% and 12%, and 268% and 15% respectively. Denitrification potentials in rhizosphere of three wetland plants were not significantly different, but nitrification potentials in rhizosphere followed the order of C. indica > T. augustifolia > P. australis when addition of earthworms into constructed wetland. Addition of earthworms to the vegetated constructed significantly increased the total number of bacteria and fungi of substrates (P < 0.05). The total number of bacteria was significantly correlated with nitrification potentials (r = 913, P < 0.01) and denitrification potentials (r = 840, P < 0.01), respectively. The N concentration of stems and leaves of C. indica were significantly higher in the constructed wetland with earthworms (P < 0.05). Earthworms had greater impact on nitrification potentials than denitrification potentials. The removal efficiency of N was improved via stimulated nitrification potentials by earthworms and higher N uptake by wetland plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sesquiterpenoids, and specifically sesquiterpene lactones from Asteraceae, may play a highly significant role in human health, both as part of a balanced diet and as pharmaceutical agents, due to their potential for the treatment of cardiovascular disease and cancer. This review highlights the role of sesquiterpene lactones endogenously in the plants that produce them, and explores mechanisms by which they interact in animal and human consumers of these plants. Several mechanisms are proposed for the reduction of inflammation and tumorigenesis at potentially achievable levels in humans. Plants can be classified by their specific array of produced sesquiterpene lactones, showing high levels of translational control. Studies of folk medicines implicate sesquiterpene lactones as the active ingredient in many treatments for other ailments such as diarrhea, burns, influenza, and neurodegradation. In addition to the anti-inflammatory response, sesquiterpene lactones have been found to sensitize tumor cells to conventional drug treatments. This review explores the varied ecological roles of sesquiterpenes in the plant producer, depending upon the plant and the compound. These include allelopathy with other plants, insects, and microbes, thereby causing behavioural or developmental modification to these secondary organisms to the benefit of the sesquiterpenoid producer. Some sesquiterpenoid lactones are antimicrobial, disrupting the cell wall of fungi and invasive bacteria, whereas others protect the plant from environmental stresses that would otherwise cause oxidative damage. Many of the compounds are effective due to their bitter flavor, which has obvious implications for human consumers. The implications of sesquiterpenoid lactone qualitiesfor future crop production are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concern about biodiversity loss has led to increased public investment in conservation. Whereas there is a widespread perception that such initiatives have been unsuccessful, there are few quantitative tests of this perception. Here, we evaluate whether rates of biodiversity change have altered in recent decades in three European countries (Great Britain, Netherlands and Belgium) for plants and flower visiting insects. We compared four 20-year periods, comparing periods of rapid land-use intensification and natural habitat loss (1930–1990) with a period of increased conservation investment (post-1990). We found that extensive species richness loss and biotic homogenisation occurred before 1990, whereas these negative trends became substantially less accentuated during recent decades, being partially reversed for certain taxa (e.g. bees in Great Britain and Netherlands). These results highlight the potential to maintain or even restore current species assemblages (which despite past extinctions are still of great conservation value), at least in regions where large-scale land-use intensification and natural habitat loss has ceased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potassium and phosphorus are important macronutrients for crops but are often deficient in the field. Very little is known about how plants sense fluctuations in K and P and how information about K and P availability is integrated at the whole plant level into physiological and metabolic adaptations. This chapter reviews recent advances in discovering molecular responses of plants to K and P deficiency by microarray experiments. These studies provide us not only with a comprehensive picture of adaptive mechanisms, but also with a large number of transcriptional markers that can be used to identify upstream components of K and P signalling pathways. On the basis of the available information we discuss putative receptors and signals involved in the sensing and integration of K and P status both at the cellular and at the whole plant level. These involve membrane potential, voltage-dependent ion channels, intracellular Ca and pH, and transcription factors, as well as hormones and metabolites for systemic signalling. Genetic screens of reporter lines for transcriptional markers and metabolome analysis of K- and P-deficient plants are likely to further advance our knowledge in this area in the near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcriptome of an organism is its set of gene transcripts (mRNAs) at a defined spatial and temporal locus. Because gene expression is affected markedly by environmental and developmental perturbations, it is widely assumed that transcriptome divergence among taxa represents adaptive phenotypic selection. This assumption has been challenged by neutral theories which propose that stochastic processes drive transcriptome evolution. To test for evidence of neutral transcriptome evolution in plants, we quantified 18 494 gene transcripts in nonsenescent leaves of 14 taxa of Brassicaceae using robust cross-species transcriptomics which includes a two-step physical and in silico-based normalization procedure based on DNA similarity among taxa. Transcriptome divergence correlates positively with evolutionary distance between taxa and with variation in gene expression among samples. Results are similar for pseudogenes and chloroplast genes evolving at different rates. Remarkably, variation in transcript abundance among root-cell samples correlates positively with transcriptome divergence among root tissues and among taxa. Because neutral processes affect transcriptome evolution in plants, many differences in gene expression among or within taxa may be nonfunctional, reflecting ancestral plasticity and founder effects. Appropriate null models are required when comparing transcriptomes in space and time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High soil phosphorus (P) concentration is frequently shown to reduce root colonization by arbuscular mycorrhizal (AM) fungi, but the influence of P on the diversity of colonizing AM fungi is uncertain. We used terminal restriction fragment length polymorphism (T-RFLP) of 18S rDNA and cloning to assess diversity of AM fungi colonizing maize (Zea mays), soybean (Glycene max) and field violet (Viola arvensis) at three time points in one season along a P gradient of 10280mgl1 in the field. Percentage AM colonization changed between sampling time points but was not reduced by high soil P except in maize. There was no significant difference in AM diversity between sampling time points. Diversity was reduced at concentrations of P > 25mgl1, particularly in maize and soybean. Both cloning and T-RFLP indicated differences between AM communities in the different host species. Host species was more important than soil P in determining the AM community, except at the highest P concentration. Our results show that the impact of soil P on the diversity of AM fungi colonizing plants was broadly similar, despite the fact that different plants contained different communities. However, subtle differences in the response of the AM community in each host were evident.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our aim was to generate and prove the concept of "smart" plants to monitor plant phosphorus (P) status in Arabidopsis. Smart plants can be genetically engineered by transformation with a construct containing the promoter of a gene up-regulated specifically by P starvation in an accessible tissue upstream of a marker gene such as beta-glucuronidase (GUS). First, using microarrays, we identified genes whose expression changed more than 2.5-fold in shoots of plants growing hydroponically when P, but not N or K, was withheld from the nutrient solution. The transient changes in gene expression occurring immediately (4 h) after P withdrawal were highly variable, and many nonspecific, shock-induced genes were up-regulated during this period. However, two common putative cis-regulatory elements (a PHO-like element and a TATA box-like element) were present significantly more often in the promoters of genes whose expression increased 4 h after the withdrawal of P compared with their general occurrence in the promoters of all genes represented on the microarray. Surprisingly, the expression of only four genes differed between shoots of P-starved and -replete plants 28 h after P was withdrawn. This lull in differential gene expression preceded the differential expression of a new group of 61 genes 100 h after withdrawing P. A literature survey indicated that the expression of many of these "late" genes responded specifically to P starvation. Shoots had reduced P after 100 h, but growth was unaffected. The expression of SQD1, a gene involved in the synthesis of sulfolipids, responded specifically to P starvation and was increased 100 h after withdrawing P. Leaves of Arabidopsis bearing a SQD1::GUS construct showed increased GUS activity after P withdrawal, which was detectable before P starvation limited growth. Hence, smart plants can monitor plant P status. Transferring this technology to crops would allow precision management of P fertilization, thereby maintaining yields while reducing costs, conserving natural resources, and preventing pollution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants constantly sense the changes in their environment; when mineral elements are scarce, they often allocate a greater proportion of their biomass to the root system. This acclimatory response is a consequence of metabolic changes in the shoot and an adjustment of carbohydrate transport to the root. It has long been known that deficiencies of essential macronutrients (nitrogen, phosphorus, potassium and magnesium) result in an accumulation of carbohydrates in leaves and roots, and modify the shoot-to-root biomass ratio. Here, we present an update on the effects of mineral deficiencies on the expression of genes involved in primary metabolism in the shoot, the evidence for increased carbohydrate concentrations and altered biomass allocation between shoot and root, and the consequences of these changes on the growth and morphology of the plant root system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses beginning teachers thinking about the nature and purposes of their subject and the impact of this on their practice. Individual qualitative interviews were undertaken with 11 history teachers at the beginning of their teaching careers. Data was analysed using writing as the method of analysis and revealed that teachers whose thinking was at odds with dominant discourses, for example in the form of a national curriculum, encountered difficulties embracing pedagogies and aspects of the curriculum that do not accord with their own deep-seated beliefs, demonstrating a need for the initial training and professional development of teachers to forefront consideration of subject understandings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses beginning teachers thinking about the nature and purposes of their subject and the impact of this on their practice. Individual qualitative interviews were undertaken with 11 history teachers at the beginning of their teaching careers. Data was analysed using writing as the method of analysis and revealed that teachers whose thinking was at odds with dominant discourses, for example in the form of a national curriculum, encountered difficulties embracing pedagogies and aspects of the curriculum that do not accord with their own deep-seated beliefs, demonstrating a need for the initial training and professional development of teachers to forefront consideration of subject understandings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent identification of multiple dominant mutations in the gene encoding β-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of β-catenin function in cognitive impairment. In humans, β-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo β-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome. In parallel, characterization of a chemically mutagenized mouse line that displays features similar to those of human patients with β-catenin mutations enabled us to investigate the consequences of β-catenin dysfunction through development and into adulthood. The mouse mutant, designated batface (Bfc), carries a Thr653Lys substitution in the C-terminal armadillo repeat of β-catenin and displayed a reduced affinity for membrane-associated cadherins. In association with this decreased cadherin interaction, we found that the mutation results in decreased intrahemispheric connections, with deficits in dendritic branching, long-term potentiation, and cognitive function. Our study provides in vivo evidence that dominant mutations in β-catenin underlie losses in its adhesion-related functions, which leads to severe consequences, including intellectual disability, childhood hypotonia, progressive spasticity of lower limbs, and abnormal craniofacial features in adults

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exceptionally broad species diversity of vascular plant genera in east Asian temperate forests, compared with their sister taxa in North America, has been attributed to the greater climatic diversity of east Asia, combined with opportunities for allopatric speciation afforded by repeated fragmentation and coalescence of populations through Late Cenozoic ice-age cycles1. According to Qian and Ricklefs1, these opportunities occurred in east Asia because temperate forests extended across the continental shelf to link populations in China, Korea and Japan during glacial periods, whereas higher sea levels during interglacial periods isolated these regions and warmer temperatures restricted temperate taxa to disjunct refuges. However, palaeovegetation data from east Asia2, 3, 4, 5, 6 show that temperate forests were considerably less extensive than today during the Last Glacial Maximum, calling into question the coalescence of tree populations required by the hypothesis of Qian and Ricklefs1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activating transcription factor 3 (Atf3) is rapidly and transiently upregulated in numerous systems, and is associated with various disease states. Atf3 is required for negative feedback regulation of other genes, but is itself subject to negative feedback regulation possibly by autorepression. In cardiomyocytes, Atf3 and Egr1 mRNAs are upregulated via ERK1/2 signalling and Atf3 suppresses Egr1 expression. We previously developed a mathematical model for the Atf3-Egr1 system. Here, we adjusted and extended the model to explore mechanisms of Atf3 feedback regulation. Introduction of an autorepressive loop for Atf3 tuned down its expression and inhibition of Egr1 was lost, demonstrating that negative feedback regulation of Atf3 by Atf3 itself is implausible in this context. Experimentally, signals downstream from ERK1/2 suppress Atf3 expression. Mathematical modelling indicated that this cannot occur by phosphorylation of pre-existing inhibitory transcriptional regulators because the time delay is too short. De novo synthesis of an inhibitory transcription factor (ITF) with a high affinity for the Atf3 promoter could suppress Atf3 expression, but (as with the Atf3 autorepression loop) inhibition of Egr1 was lost. Developing the model to include newly-synthesised miRNAs very efficiently terminated Atf3 protein expression and, with a 4-fold increase in the rate of degradation of mRNA from the mRNA/miRNA complex, profiles for Atf3 mRNA, Atf3 protein and Egr1 mRNA approximated to the experimental data. Combining the ITF model with that of the miRNA did not improve the profiles suggesting that miRNAs are likely to play a dominant role in switching off Atf3 expression post-induction.