145 resultados para Demand forecast
Resumo:
Demand response is believed by some to become a major contributor towards system balancing in future electricity networks. Shifting or reducing demand at critical moments can reduce the need for generation capacity, help with the integration of renewables, support more efficient system operation and thereby potentially lead to cost and carbon reductions for the entire energy system. In this paper we review the nature of the response resource of consumers from different non-domestic sectors in the UK, based on extensive half hourly demand profiles and observed demand responses. We further explore the potential to increase the demand response capacity through changes in the regulatory and market environment. The analysis suggests that present demand response measures tend to stimulate stand-by generation capacity in preference to load shifting and we propose that extended response times may favour load based demand response, especially in sectors with significant thermal loads.
Resumo:
This article reports the results of an experiment that examined how demand aggregators can discipline vertically-integrated firms - generator and distributor-retailer holdings-, which have a high share in wholesale electricity market with uniform price double auction (UPDA). We initially develop a treatment where holding members redistribute the profit based on the imposition of supra-competitive prices, in equal proportions (50%-50%). Subsequently, we introduce a vertical disintegration (unbundling) treatment with holding-s information sharing, where profits are distributed according to market outcomes. Finally, a third treatment is performed to introduce two active demand aggregators, with flexible interruptible loads in real time. We found that the introduction of responsive demand aggregators neutralizes the power market and increases market efficiency, even beyond what is achieved through vertical disintegration.
Resumo:
Often, firms have no information on the specification of the true demand model they are faced with. It is, however, a well established fact that trial-and-error algorithms may be used by them in order to learn how to make optimal decisions. Using experimental methods, we identify a property of the information on past actions which helps the seller of two asymmetric demand substitutes to reach the optimal prices more precisely and faster. The property concerns the possibility of disaggregating changes in each product’s demand into client exit/entry and shift from one product to the other.
Resumo:
Medium range flood forecasting activities, driven by various meteorological forecasts ranging from high resolution deterministic forecasts to low spatial resolution ensemble prediction systems, share a major challenge in the appropriateness and design of performance measures. In this paper possible limitations of some traditional hydrological and meteorological prediction quality and verification measures are identified. Some simple modifications are applied in order to circumvent the problem of the autocorrelation dominating river discharge time-series and in order to create a benchmark model enabling the decision makers to evaluate the forecast quality and the model quality. Although the performance period is quite short the advantage of a simple cost-loss function as a measure of forecast quality can be demonstrated.
Resumo:
In this paper the properties of a hydro-meteorological forecasting system for forecasting river flows have been analysed using a probabilistic forecast convergence score (FCS). The focus on fixed event forecasts provides a forecaster's approach to system behaviour and adds an important perspective to the suite of forecast verification tools commonly used in this field. A low FCS indicates a more consistent forecast. It can be demonstrated that the FCS annual maximum decreases over the last 10 years. With lead time, the FCS of the ensemble forecast decreases whereas the control and high resolution forecast increase. The FCS is influenced by the lead time, threshold and catchment size and location. It indicates that one should use seasonality based decision rules to issue flood warnings.
Resumo:
The incorporation of numerical weather predictions (NWP) into a flood forecasting system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and lead to a high number of false alarms. The availability of global ensemble numerical weather prediction systems through the THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a new opportunity for flood forecast. The Grid-Xinanjiang distributed hydrological model, which is based on the Xinanjiang model theory and the topographical information of each grid cell extracted from the Digital Elevation Model (DEM), is coupled with ensemble weather predictions based on the TIGGE database (CMC, CMA, ECWMF, UKMO, NCEP) for flood forecast. This paper presents a case study using the coupled flood forecasting model on the Xixian catchment (a drainage area of 8826 km2) located in Henan province, China. A probabilistic discharge is provided as the end product of flood forecast. Results show that the association of the Grid-Xinanjiang model and the TIGGE database gives a promising tool for an early warning of flood events several days ahead.
Resumo:
Using annual observations on industrial production over the last three centuries, and on GDP over a 100-year period, we seek an historical perspective on the forecastability of these UK output measures. The series are dominated by strong upward trends, so we consider various specifications of this, including the local linear trend structural time-series model, which allows the level and slope of the trend to vary. Our results are not unduly sensitive to how the trend in the series is modelled: the average sizes of the forecast errors of all models, and the wide span of prediction intervals, attests to a great deal of uncertainty in the economic environment. It appears that, from an historical perspective, the postwar period has been relatively more forecastable.
Resumo:
In this paper we introduce a new testing procedure for evaluating the rationality of fixed-event forecasts based on a pseudo-maximum likelihood estimator. The procedure is designed to be robust to departures in the normality assumption. A model is introduced to show that such departures are likely when forecasters experience a credibility loss when they make large changes to their forecasts. The test is illustrated using monthly fixed-event forecasts produced by four UK institutions. Use of the robust test leads to the conclusion that certain forecasts are rational while use of the Gaussian-based test implies that certain forecasts are irrational. The difference in the results is due to the nature of the underlying data. Copyright © 2001 John Wiley & Sons, Ltd.
Resumo:
We analyse by simulation the impact of model-selection strategies (sometimes called pre-testing) on forecast performance in both constant-and non-constant-parameter processes. Restricted, unrestricted and selected models are compared when either of the first two might generate the data. We find little evidence that strategies such as general-to-specific induce significant over-fitting, or thereby cause forecast-failure rejection rates to greatly exceed nominal sizes. Parameter non-constancies put a premium on correct specification, but in general, model-selection effects appear to be relatively small, and progressive research is able to detect the mis-specifications.
Resumo:
We consider methods of evaluating multivariate density forecasts. A recently proposed method is found to lack power when the correlation structure is mis-specified. Tests that have good power to detect mis-specifications of this sort are described. We also consider the properties of the tests in the presence of more general mis-specifications.