223 resultados para Convective plume
Resumo:
Mid-latitude weather systems are key contributors to the transport of atmospheric water vapour, but less is known about the role of the boundary layer in this transport. We expand a conceptual model of dry boundary-layer structure under synoptic systems to include moist processes, using idealised simulations of cyclone waves to investigate the three-way interaction between the boundary layer, atmospheric moisture and large-scale dynamics. Forced by large-scale thermal advection, boundary-layer structures develop over large areas, analogous to the daytime convective boundary layer, the nocturnal stable boundary layer and transitional regimes between these extremes.
Resumo:
There are at least three distinct time scales that are relevant for the evolution of atmospheric convection. These are the time scale of the forcing mechanism, the time scale governing the response to a steady forcing, and the time scale of the response to variations in the forcing. The last of these, tmem, is associated with convective life cycles, which provide an element of memory in the system. A highly simplified model of convection is introduced, which allows for investigation of the character of convection as a function of the three time scales. For short tmem, the convective response is strongly tied to the forcing as in conventional equilibrium parameterization. For long tmem, the convection responds only to the slowly evolving component of forcing, and any fluctuations in the forcing are essentially suppressed. At intermediate tmem, convection becomes less predictable: conventional equilibrium closure breaks down and current levels of convection modify the subsequent response.
Resumo:
Insect returns from the UK's Doppler weather radars were collected in the summers of 2007 and 2008, to ascertain their usefulness in providing information about boundary layer winds. Such observations could be assimilated into numerical weather prediction models to improve forecasts of convective showers before precipitation begins. Significant numbers of insect returns were observed during daylight hours on a number of days through this period, when they were detected at up to 30 km range from the radars, and up to 2 km above sea level. The range of detectable insect returns was found to vary with time of year and temperature. There was also a very weak correlation with wind speed and direction. Use of a dual-polarized radar revealed that the insects did not orient themselves at random, but showed distinct evidence of common orientation on several days, sometimes at an angle to their direction of travel. Observation minus model background residuals of wind profiles showed greater bias and standard deviation than that of other wind measurement types, which may be due to the insects' headings/airspeeds and to imperfect data extraction. The method used here, similar to the Met Office's procedure for extracting precipitation returns, requires further development as clutter contamination remained one of the largest error contributors. Wind observations derived from the insect returns would then be useful for data assimilation applications.
Resumo:
The radiation budget simulated by the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) is evaluated for the period 1979–2001 using independent satellite data and additional model data. This provides information on the quality of the radiation products and indirect evaluation of other aspects of the climate produced by ERA40. The climatology of clear-sky outgoing longwave radiation (OLR) is well captured by ERA40. Underestimations of about 10 W m−2 in clear-sky OLR over tropical convective regions by ERA40 compared to satellite data are substantially reduced when the satellite sampling is taken into account. The climatology of column-integrated water vapor is well simulated by ERA40 compared to satellite data over the ocean, indicating that the simulation of downward clear-sky longwave fluxes at the surface is likely to be good. Clear-sky absorbed solar radiation (ASR) and clear-sky OLR are overestimated by ERA40 over north Africa and high-latitude land regions. The observed interannual changes in low-latitude means are not well reproduced. Using ERA40 to analyze trends and climate feedbacks globally is therefore not recommended. The all-sky radiation budget is poorly simulated by ERA40. OLR is overestimated by around 10 W m−2 over much of the globe. ASR is underestimated by around 30 W m−2 over tropical ocean regions. Away from marine stratocumulus regions, where cloud fraction is underestimated by ERA40, the poor radiation simulation by ERA40 appears to be related to inaccurate radiative properties of cloud rather than inaccurate cloud distributions.
Resumo:
Numerical studies of surface ocean fronts forced by inhomogeneous buoyancy loss show nonhydrostatic convective plumes coexisting with baroclinic eddies. The character of the vertical overturning depends sensitively on the treatment of the vertical momentum equation in the model. It is less well known how the frontal evolution over scales of O(10 km) is affected by these dynamics. Here, we compare highly resolved numerical experiments using nonhydrostatic and hydrostatic models and the convective-adjustment parametrization. The impact of nonhydrostatic processes on average cross-frontal transfer is weak compared to the effect of the O(1 km) scale baroclinic motions. For water-mass distribution and formation rate nonhydrostatic dynamics have similar influence to the baroclinic eddies although adequate resolution of the gradients in forcing fluxes is more important. The overall implication is that including nonhydrostatic surface frontal dynamics in ocean general circulation models will have only a minor effect on scales of O(1 km) and greater.
Resumo:
A high resolution regional atmosphere model is used to investigate the sensitivity of the North Atlantic storm track to the spatial and temporal resolution of the sea surface temperature (SST) data used as a lower boundary condition. The model is run over an unusually large domain covering all of the North Atlantic and Europe, and is shown to produce a very good simulation of the observed storm track structure. The model is forced at the lateral boundaries with 15–20 years of data from the ERA-40 reanalysis, and at the lower boundary by SST data of differing resolution. The impacts of increasing spatial and temporal resolution are assessed separately, and in both cases increasing the resolution leads to subtle, but significant changes in the storm track. In some, but not all cases these changes act to reduce the small storm track biases seen in the model when it is forced with low-resolution SSTs. In addition there are several clear mesoscale responses to increased spatial SST resolution, with surface heat fluxes and convective precipitation increasing by 10–20% along the Gulf Stream SST gradient.
Resumo:
Cascade is a multi-institution project studying the temporal and spatial organization of tropical convective systems. While cloud resolving numerical models can reproduce the observed diurnal cycle of such systems they are sensitive to the chosen resolution. As part of this effort, we are comparing results from the Met. Office Unified Model to data from the Global Earth Radiation Budget satellite instrument over the African Monsoon Interdisciplinary Analyses region of North Africa. We use a variety of mathematical techniques to study the outgoing radiation and the evolution of properties such as the cloud size distribution. The effectiveness of various model resolutions is tested with a view to determining the optimum balance between resolution and the need to reproduce the observations.
Resumo:
General circulation models (GCMs) use the laws of physics and an understanding of past geography to simulate climatic responses. They are objective in character. However, they tend to require powerful computers to handle vast numbers of calculations. Nevertheless, it is now possible to compare results from different GCMs for a range of times and over a wide range of parameterisations for the past, present and future (e.g. in terms of predictions of surface air temperature, surface moisture, precipitation, etc.). GCMs are currently producing simulated climate predictions for the Mesozoic, which compare favourably with the distributions of climatically sensitive facies (e.g. coals, evaporites and palaeosols). They can be used effectively in the prediction of oceanic upwelling sites and the distribution of petroleum source rocks and phosphorites. Models also produce evaluations of other parameters that do not leave a geological record (e.g. cloud cover, snow cover) and equivocal phenomena such as storminess. Parameterisation of sub-grid scale processes is the main weakness in GCMs (e.g. land surfaces, convection, cloud behaviour) and model output for continental interiors is still too cold in winter by comparison with palaeontological data. The sedimentary and palaeontological record provides an important way that GCMs may themselves be evaluated and this is important because the same GCMs are being used currently to predict possible changes in future climate. The Mesozoic Earth was, by comparison with the present, an alien world, as we illustrate here by reference to late Triassic, late Jurassic and late Cretaceous simulations. Dense forests grew close to both poles but experienced months-long daylight in warm summers and months-long darkness in cold snowy winters. Ocean depths were warm (8 degrees C or more to the ocean floor) and reefs, with corals, grew 10 degrees of latitude further north and south than at the present time. The whole Earth was warmer than now by 6 degrees C or more, giving more atmospheric humidity and a greatly enhanced hydrological cycle. Much of the rainfall was predominantly convective in character, often focused over the oceans and leaving major desert expanses on the continental areas. Polar ice sheets are unlikely to have been present because of the high summer temperatures achieved. The model indicates extensive sea ice in the nearly enclosed Arctic seaway through a large portion of the year during the late Cretaceous, and the possibility of sea ice in adjacent parts of the Midwest Seaway over North America. The Triassic world was a predominantly warm world, the model output for evaporation and precipitation conforming well with the known distributions of evaporites, calcretes and other climatically sensitive facies for that time. The message from the geological record is clear. Through the Phanerozoic, Earth's climate has changed significantly, both on a variety of time scales and over a range of climatic states, usually baldly referred to as "greenhouse" and "icehouse", although these terms disguise more subtle states between these extremes. Any notion that the climate can remain constant for the convenience of one species of anthropoid is a delusion (although the recent rate of climatic change is exceptional). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The western Pacific subtropical high (WPSH) is closely related to Asian climate. Previous examination of changes in the WPSH found a westward extension since the late 1970s, which has contributed to the inter-decadal transition of East Asian climate. The reason for the westward extension is unknown, however. The present study suggests that this significant change of WPSH is partly due to the atmosphere's response to the observed Indian Ocean-western Pacific (IWP) warming. Coordinated by a European Union's Sixth Framework Programme, Understanding the Dynamics of the Coupled Climate System (DYNAMITE), five AGCMs were forced by identical idealized sea surface temperature patterns representative of the IWP warming and cooling. The results of these numerical experiments suggest that the negative heating in the central and eastern tropical Pacific and increased convective heating in the equatorial Indian Ocean/ Maritime Continent associated with IWP warming are in favor of the westward extension of WPSH. The SST changes in IWP influences the Walker circulation, with a subsequent reduction of convections in the tropical central and eastern Pacific, which then forces an ENSO/Gill-type response that modulates the WPSH. The monsoon diabatic heating mechanism proposed by Rodwell and Hoskins plays a secondary reinforcing role in the westward extension of WPSH. The low-level equatorial flank of WPSH is interpreted as a Kelvin response to monsoon condensational heating, while the intensified poleward flow along the western flank of WPSH is in accord with Sverdrup vorticity balance. The IWP warming has led to an expansion of the South Asian high in the upper troposphere, as seen in the reanalysis.
Resumo:
The intraseasonal variability (ISV) of the Indian summer monsoon is dominated by a 30–50 day oscillation between “active” and “break” events of enhanced and reduced rainfall over the subcontinent, respectively. These organized convective events form in the equatorial Indian Ocean and propagate north to India. Atmosphere–ocean coupled processes are thought to play a key role the intensity and propagation of these events. A high-resolution, coupled atmosphere–mixed-layer-oceanmodel is assembled: HadKPP. HadKPP comprises the Hadley Centre Atmospheric Model (HadAM3) and the K Profile Parameterization (KPP) mixed-layer ocean model. Following studies that upper-ocean vertical resolution and sub-diurnal coupling frequencies improve the simulation of ISV in SSTs, KPP is run at 1 m vertical resolution near the surface; the atmosphere and ocean are coupled every three hours. HadKPP accurately simulates the 30–50 day ISV in rainfall and SSTs over India and the Bay of Bengal, respectively, but suffers from low ISV on the equator. This is due to the HadAM3 convection scheme producing limited ISV in surface fluxes. HadKPP demonstrates little of the observed northward propagation of intraseasonal events, producing instead a standing oscillation. The lack of equatorial ISV in convection in HadAM3 constrains the ability of KPP to produce equatorial SST anomalies, which further weakens the ISV of convection. It is concluded that while atmosphere–ocean interactions are undoubtedly essential to an accurate simulation of ISV, they are not a panacea for model deficiencies. In regions where the atmospheric forcing is adequate, such as the Bay of Bengal, KPP produces SST anomalies that are comparable to the Tropical Rainfall Measuring Mission Microwave Imager (TMI) SST analyses in both their magnitude and their timing with respect to rainfall anomalies over India. HadKPP also displays a much-improved phase relationship between rainfall and SSTs over a HadAM3 ensemble forced by observed SSTs, when both are compared to observations. Coupling to mixed-layer models such as KPP has the potential to improve operational predictions of ISV, particularly when the persistence time of SST anomalies is shorter than the forecast lead time.
Resumo:
Recent radar and rain-gauge observations from the island of Dominica, which lies in the eastern Caribbean sea at 15 N, show a strong orographic enhancement of trade-wind precipitation. The mechanisms behind this enhancement are investigated using idealized large-eddy simulations with a realistic representation of the shallow trade-wind cumuli over the open ocean upstream of the island. The dominant mechanism is found to be the rapid growth of convection by the bulk lifting of the inhomogenous impinging flow. When rapidly lifted by the terrain, existing clouds and other moist parcels gain buoyancy relative to rising dry air because of their different adiabatic lapse rates. The resulting energetic, closely-packed convection forms precipitation readily and brings frequent heavy showers to the high terrain. Despite this strong precipitation enhancement, only a small fraction (1%) of the impinging moisture flux is lost over the island. However, an extensive rain shadow forms to the lee of Dominica due to the convective stabilization, forced descent, and wave breaking. A linear model is developed to explain the convective enhancement over the steep terrain.
Resumo:
The “natural laboratory” of mountainous Dominica (15°N) in the trade wind belt is used to study the physics of tropical orographic precipitation in its purest form, unforced by weather disturbances or by the diurnal cycle of solar heating. A cross-island line of rain gauges and 5-min radar scans from Guadeloupe reveal a large annual precipitation at high elevation (7 m yr^{−1}) and a large orographic enhancement factor (2 to 8) caused primarily by repetitive convective triggering over the windward slope. The triggering is caused by terrain-forced lifting of the conditionally unstable trade wind cloud layer. Ambient humidity fluctuations associated with open-ocean convection may play a key role. The convection transports moisture upward and causes frequent brief showers on the hilltops. The drying ratio of the full air column from precipitation is less than 1% whereas the surface air dries by about 17% from the east coast to the mountain top. On the lee side, a plunging trade wind inversion and reduced instability destroys convective clouds and creates an oceanic rain shadow.
Resumo:
A combination of idealized numerical simulations and analytical theory is used to investigate the spacing between convective orographic rainbands over the Coastal Range of western Oregon. The simulations, which are idealized from an observed banded precipitation event over the Coastal Range, indicate that the atmospheric response to conditionally unstable flow over the mountain ridge depends strongly on the subridge-scale topographic forcing on the windward side of the ridge. When this small-scale terrain contains only a single scale (l) of terrain variability, the band spacing is identical to l, but when a spectrum of terrain scales are simultaneously present, the band spacing ranges between 5 and 10 km, a value that is consistent with observations. Based on the simulations, an inviscid linear model is developed to provide a physical basis for understanding the scale selection of the rainbands. This analytical model, which captures the transition from lee waves upstream of the orographic cloud to moist convection within it, reveals that the spacing of orographic rainbands depends on both the projection of lee-wave energy onto the unstable cap cloud and the growth rate of unstable perturbations within the cloud. The linear model is used in tandem with numerical simulations to determine the sensitivity of the band spacing to a number of environmental and terrain-related parameters.
Resumo:
The triggering of convective orographic rainbands by small-scale topographic features is investigated through observations of a banded precipitation event over the Oregon Coastal Range and simulations using a cloud-resolving numerical model. A quasi-idealized simulation of the observed event reproduces the bands in the radar observations, indicating the model’s ability to capture the physics of the band-formation process. Additional idealized simulations reinforce that the bands are triggered by lee waves past small-scale topographic obstacles just upstream of the nominal leading edge of the orographic cloud. Whether a topographic obstacle in this region is able to trigger a strong rainband depends on the phase of its lee wave at cloud entry. Convective growth only occurs downstream of obstacles that give rise to lee-wave-induced displacements that create positive vertical velocity anomalies w_c and nearly zero buoyancy anomalies b_c as air parcels undergo saturation. This relationship is quantified through a simple analytic condition involving w_c, b_c, and the static stability N_m^2 of the cloud mass. Once convection is triggered, horizontal buoyancy gradients in the cross-flow direction generate circulations that align the bands parallel to the flow direction.
Resumo:
Field studies were carried out on the water and sediment dynamics in the tropical, macro-tidal, Daly Estuary. The estuary is shallow, very-turbid, about 100 km long, and the entrance is funnel-shape. In the wet, high flow season, normal tidal ranges can be suppressed in the estuary, depending on inflow rates, and freshwater becomes dominant up to the mouth. At that time a fraction of the fine sediment load is exported offshore as a bottom-tagging nepheloid layer after the sediment falls out of suspension of the thin, near-surface, river plume. The remaining fraction and the riverine coarse sediment form a large sediment bar 10 km long, up to 6 m in height and extending across the whole width of the channel near the mouth. This bar, as well as shoals in the estuary, partially pond the mid- to upper-estuary. This bar builds up from the deposition of riverine sediment during a wet season with high runoff and can raise mean water level by up to 2 m in the upper estuary in the low flow season. This ponding effect takes about three successive dry years to disappear by the sediment forming the bar being redistributed all over the estuary by tidal pumping of fine and coarse sediment in the dry season, which is the low flow season. The swift reversal of the tidal currents from ebb to flood results in macro-turbulence that lasts about 20 min. Bed load transport is preferentially landward and occurs only for water currents greater than 0.6 m s(-1). This high value of the threshold velocity suggests that the sand may be cemented by the mud. The Daly Estuary thus is a leaky sediment trap with an efficiency varying both seasonally and inter-annually. (c) 2006 Elsevier Ltd. All rights reserved.