98 resultados para Conceptual Models of Coaching
Resumo:
Cognitive models of obsessive compulsive disorder (OCD) have been influential in understanding and treating the disorder in adults. Cognitive models may also be applicable to children and adolescents and would have important implications for treatment. The aim of this systematic review was to evaluate research that examined the applicability of the cognitive model of OCD to children and adolescents. Inclusion criteria were set broadly but most studies identified included data regarding responsibility appraisals, thought-action fusion or meta-cognitive models of OCD in children or adolescents. Eleven studies were identified in a systematic literature search. Seven studies were with non clinical samples, and 10 studies were cross-sectional. Only one study did not support cognitive models of OCD in children and adolescents and this was with a clinical sample and was the only experimental study. Overall, the results strongly supported the applicability of cognitive models of OCD to children and young people. There were, however, clear gaps in the literature. Future research should include experimental studies, clinical groups, and should test which of the different models provide more explanatory power.
The dark side of brand attachment: a conceptual framework of brand attachment's detrimental outcomes
Resumo:
Brand attachment recently has received great attention among practitioners and academics alike. Scholars consider brand attachment a key requisite in consumer-brand relationships that create favourable consumer behaviours such as positive brand attitudes and brand loyalty. Few studies, however, examine the detrimental outcomes of brand attachment. In this paper, we develop a conceptual framework that explores how brand attachment may explain detrimental consumer behaviours, such as oppositional brand loyalty and antibrand actions. We investigate consumers' trash-talking and schadenfreude in brand communities and their subsequent outcomes. Our framework reveals that the link between brand attachment and oppositional brand loyalty is driven by consumers' social identity and sense of rivalry. Furthermore, we put forward that brand attachment leads to anti-brand actions when relationships deteriorate. We identify two factors behind the deterioration: (1) companies' opportunism activities, and (2) incongruity between consumers' values and the brand's values. Theoretical and managerial implications are discussed arising from our emerging 'dark side' brand attachment framework.
Resumo:
The contraction of a species’ distribution range, which results from the extirpation of local populations, generally precedes its extinction. Therefore, understanding drivers of range contraction is important for conservation and management. Although there are many processes that can potentially lead to local extirpation and range contraction, three main null models have been proposed: demographic, contagion, and refuge. The first two models postulate that the probability of local extirpation for a given area depends on its relative position within the range; but these models generate distinct spatial predictions because they assume either a ubiquitous (demographic) or a clinal (contagion) distribution of threats. The third model (refuge) postulates that extirpations are determined by the intensity of human impacts, leading to heterogeneous spatial predictions potentially compatible with those made by the other two null models. A few previous studies have explored the generality of some of these null models, but we present here the first comprehensive evaluation of all three models. Using descriptive indices and regression analyses we contrast the predictions made by each of the null models using empirical spatial data describing range contraction in 386 terrestrial vertebrates (mammals, birds, amphibians, and reptiles) distributed across the World. Observed contraction patterns do not consistently conform to the predictions of any of the three models, suggesting that these may not be adequate null models to evaluate range contraction dynamics among terrestrial vertebrates. Instead, our results support alternative null models that account for both relative position and intensity of human impacts. These new models provide a better multifactorial baseline to describe range contraction patterns in vertebrates. This general baseline can be used to explore how additional factors influence contraction, and ultimately extinction for particular areas or species as well as to predict future changes in light of current and new threats.
Resumo:
Extratropical cyclone lifecycles have been studied extensively with the aim of understanding the dynamical mechanisms involved in their development. Previous work has often been based on subjective analysis of individual case studies. Such case studies have contributed heavily to the generation of conceptual models of extratropical cyclones that provide a framework for understanding the dynamical evolution of cyclones. These conceptual models are widely used in educational meteorology courses throughout the world to illustrate the basic structure and evolution of extratropical cyclones. This article presents a database of extratropical cyclone composites which highlight the average structure and evolution of 20 years of extratropical cyclones, as opposed to individual case studies. The composite fields are achieved by combining a database containing cyclone tracks from the ERA-Interim reanalysis (1989-2009, 6 hourly) with the full 3D ERA-Interim reanalysis fields. Vertical and horizontal composites of cyclone structure for cyclones generated in the Atlantic and Pacific regions identifying features such as the relative positions of cold, warm and occluded fronts and their associated wind and cloud patterns are shown. In addition the evolution of cyclonic flows such as the warm and cold conveyor belts and dry intrusion are illustrated. A webpage containing an archive of the composited data is freely available for educational purposes.
Resumo:
This Atlas presents statistical analyses of the simulations submitted to the Aqua-Planet Experiment (APE) data archive. The simulations are from global Atmospheric General Circulation Models (AGCM) applied to a water-covered earth. The AGCMs include ones actively used or being developed for numerical weather prediction or climate research. Some are mature, application models and others are more novel and thus less well tested in Earth-like applications. The experiment applies AGCMs with their complete parameterization package to an idealization of the planet Earth which has a greatly simplified lower boundary that consists of an ocean only. It has no land and its associated orography, and no sea ice. The ocean is represented by Sea Surface Temperatures (SST) which are specified everywhere with simple, idealized distributions. Thus in the hierarchy of tests available for AGCMs, APE falls between tests with simplified forcings such as those proposed by Held and Suarez (1994) and Boer and Denis (1997) and Earth-like simulations of the Atmospheric Modeling Intercomparison Project (AMIP, Gates et al., 1999). Blackburn and Hoskins (2013) summarize the APE and its aims. They discuss where the APE fits within a modeling hierarchy which has evolved to evaluate complete models and which provides a link between realistic simulation and conceptual models of atmospheric phenomena. The APE bridges a gap in the existing hierarchy. The goals of APE are to provide a benchmark of current model behaviors and to stimulate research to understand the cause of inter-model differences., APE is sponsored by the World Meteorological Organization (WMO) joint Commission on Atmospheric Science (CAS), World Climate Research Program (WCRP) Working Group on Numerical Experimentation (WGNE). Chapter 2 of this Atlas provides an overview of the specification of the eight APE experiments and of the data collected. Chapter 3 lists the participating models and includes brief descriptions of each. Chapters 4 through 7 present a wide variety of statistics from the 14 participating models for the eight different experiments. Additional intercomparison figures created by Dr. Yukiko Yamada in AGU group are available at http://www.gfd-dennou.org/library/ape/comparison/. This Atlas is intended to present and compare the statistics of the APE simulations but does not contain a discussion of interpretive analyses. Such analyses are left for journal papers such as those included in the Special Issue of the Journal of the Meteorological Society of Japan (2013, Vol. 91A) devoted to the APE. Two papers in that collection provide an overview of the simulations. One (Blackburn et al., 2013) concentrates on the CONTROL simulation and the other (Williamson et al., 2013) on the response to changes in the meridional SST profile. Additional papers provide more detailed analysis of the basic simulations, while others describe various sensitivities and applications. The APE experiment data base holds a wealth of data that is now publicly available from the APE web site: http://climate.ncas.ac.uk/ape/. We hope that this Atlas will stimulate future analyses and investigations to understand the large variation seen in the model behaviors.
Resumo:
Many ecosystem services are delivered by organisms that depend on habitats that are segregated spatially or temporally from the location where services are provided. Management of mobile organisms contributing to ecosystem services requires consideration not only of the local scale where services are delivered, but also the distribution of resources at the landscape scale, and the foraging ranges and dispersal movements of the mobile agents. We develop a conceptual model for exploring how one such mobile-agent-based ecosystem service (MABES), pollination, is affected by land-use change, and then generalize the model to other MABES. The model includes interactions and feedbacks among policies affecting land use, market forces and the biology of the organisms involved. Animal-mediated pollination contributes to the production of goods of value to humans such as crops; it also bolsters reproduction of wild plants on which other services or service-providing organisms depend. About one-third of crop production depends on animal pollinators, while 60-90% of plant species require an animal pollinator. The sensitivity of mobile organisms to ecological factors that operate across spatial scales makes the services provided by a given community of mobile agents highly contextual. Services vary, depending on the spatial and temporal distribution of resources surrounding the site, and on biotic interactions occurring locally, such as competition among pollinators for resources, and among plants for pollinators. The value of the resulting goods or services may feed back via market-based forces to influence land-use policies, which in turn influence land management practices that alter local habitat conditions and landscape structure. Developing conceptual models for MABES aids in identifying knowledge gaps, determining research priorities, and targeting interventions that can be applied in an adaptive management context.
Resumo:
Using a literature review, we argue that new models of peatland development are needed. Many existing models do not account for potentially important ecohydrological feedbacks, and/or ignore spatial structure and heterogeneity. Existing models, including those that simulate a near total loss of the northern peatland carbon store under a warming climate, may produce misleading results because they rely upon oversimplified representations of ecological and hydrological processes. In this, the first of a pair of papers, we present the conceptual framework for a model of peatland development, DigiBog, which considers peatlands as complex adaptive systems. DigiBog accounts for the interactions between the processes which govern litter production and peat decay, peat soil hydraulic properties, and peatland water-table behaviour, in a novel and genuinely ecohydrological manner. DigiBog consists of a number of interacting submodels, each representing a different aspect of peatland ecohydrology. Here we present in detail the mathematical and computational basis, as well as the implementation and testing, of the hydrological submodel. Remaining submodels are described and analysed in the accompanying paper. Tests of the hydrological submodel against analytical solutions for simple aquifers were highly successful: the greatest deviation between DigiBog and the analytical solutions was 2·83%. We also applied the hydrological submodel to irregularly shaped aquifers with heterogeneous hydraulic properties—situations for which no analytical solutions exist—and found the model's outputs to be plausible.
Resumo:
Most prominent models of bilingual representation assume a degree of interconnection or shared representation at the conceptual level. However, in the context of linguistic and cultural specificity of human concepts, and given recent findings that reveal a considerable amount of bidirectional conceptual transfer and conceptual change in bilinguals, a particular challenge that bilingual models face is to account for non-equivalence or partial equivalence of L1 and L2 specific concepts in bilingual conceptual store. The aim of the current paper is to provide a state-of-the-art review of the available empirical evidence from the fields of psycholinguistics, cognitive, experimental, and cross-cultural psychology, and discuss how these may inform and develop further traditional and more recent accounts of bilingual conceptual representation. Based on a synthesis of the available evidence against theoretical postulates of existing models, I argue that the most coherent account of bilingual conceptual representation combines three fundamental assumptions. The first one is the distributed, multi-modal nature of representation. The second one concerns cross-linguistic and cross-cultural variation of concepts. The third one makes assumptions about the development of concepts, and the emergent links between those concepts and their linguistic instantiations.