123 resultados para Colby winter carnival
Large-scale atmospheric dynamics of the wet winter 2009–2010 and its impact on hydrology in Portugal
Resumo:
The anomalously wet winter of 2010 had a very important impact on the Portuguese hydrological system. Owing to the detrimental effects of reduced precipitation in Portugal on the environmental and socio-economic systems, the 2010 winter was predominantly beneficial by reversing the accumulated precipitation deficits during the previous hydrological years. The recorded anomalously high precipitation amounts have contributed to an overall increase in river runoffs and dam recharges in the 4 major river basins. In synoptic terms, the winter 2010 was characterised by an anomalously strong westerly flow component over the North Atlantic that triggered high precipitation amounts. A dynamically coherent enhancement in the frequencies of mid-latitude cyclones close to Portugal, also accompanied by significant increases in the occurrence of cyclonic, south and south-westerly circulation weather types, are noteworthy. Furthermore, the prevalence of the strong negative phase of the North Atlantic Oscillation (NAO) also emphasises the main dynamical features of the 2010 winter. A comparison of the hydrological and atmospheric conditions between the 2010 winter and the previous 2 anomalously wet winters (1996 and 2001) was also carried out to isolate not only their similarities, but also their contrasting conditions, highlighting the limitations of estimating winter precipitation amounts in Portugal using solely the NAO phase as a predictor.
Resumo:
Winter storms are among the most important natural hazards affecting Europe. We quantify changes in storm frequency and intensity over the North Atlantic and Europe under future climate scenarios in terms of return periods (RPs) considering uncertainties due to both sampling and methodology. RPs of North Atlantic storms' minimum central pressure (CP) and maximum vorticity (VOR) remain unchanged by 2100 for both the A1B and A2 scenarios compared to the present climate. Whereas shortened RPs for VOR of all intensities are detected for the area between British Isles/North-Sea/western Europe as early as 2040. However, the changes in storm VOR RP may be unrealistically large: a present day 50 (20) year event becomes approximately a 9 (5.5) year event in both A1B and A2 scenarios by 2100. The detected shortened RPs of storms implies a higher risk of occurrence of damaging wind events over Europe.
Resumo:
This study focuses on the analysis of winter (October-November-December-January-February-March; ONDJFM) storm events and their changes due to increased anthropogenic greenhouse gas concentrations over Europe. In order to assess uncertainties that are due to model formulation, 4 regional climate models (RCMs) with 5 high resolution experiments, and 4 global general circulation models (GCMs) are considered. Firstly, cyclone systems as synoptic scale processes in winter are investigated, as they are a principal cause of the occurrence of extreme, damage-causing wind speeds. This is achieved by use of an objective cyclone identification and tracking algorithm applied to GCMs. Secondly, changes in extreme near-surface wind speeds are analysed. Based on percentile thresholds, the studied extreme wind speed indices allow a consistent analysis over Europe that takes systematic deviations of the models into account. Relative changes in both intensity and frequency of extreme winds and their related uncertainties are assessed and related to changing patterns of extreme cyclones. A common feature of all investigated GCMs is a reduced track density over central Europe under climate change conditions, if all systems are considered. If only extreme (i.e. the strongest 5%) cyclones are taken into account, an increasing cyclone activity for western parts of central Europe is apparent; however, the climate change signal reveals a reduced spatial coherency when compared to all systems, which exposes partially contrary results. With respect to extreme wind speeds, significant positive changes in intensity and frequency are obtained over at least 3 and 20% of the European domain under study (35–72°N and 15°W–43°E), respectively. Location and extension of the affected areas (up to 60 and 50% of the domain for intensity and frequency, respectively), as well as levels of changes (up to +15 and +200% for intensity and frequency, respectively) are shown to be highly dependent on the driving GCM, whereas differences between RCMs when driven by the same GCM are relatively small.
Resumo:
Winter cyclone activity over the Northern Hemisphere is investigated in an ECHAM4/OPYC3 greenhouse gas scenario simulation. The goal of this investigation is to identify changes in cyclone activity associated with increasing concentrations. To this aim, two 50-year time periods are analysed, one representing present day climate conditions and the other a perturbed climate when CO2 concentrations exceed twice the present concentrations. Cyclone activity is assessed using an automatic algorithm, which identifies and tracks cyclones based on sea level pressure fields. The algorithm detects not only large and long living cyclones over the main ocean basins, but also their smaller counterparts in secondary storm track regions like the Mediterranean Basin. For the present climate, results show a good agreement with NCEP-reanalysis, provided that the spectral and time resolutions of the reanalysis are reduced to those available for the model. Several prominent changes in cyclone activity are observed for the scenario period in comparison to the present day climate, especially over the main ocean basins. A significant decrease of overall cyclone track density is found between 35 and 55 degrees North, together with a small increase polewards. These changes result from two different signals for deep and medium cyclones: for deep cyclones (core pressure below 990 hPa) there is a poleward shift in the greenhouse gas scenario, while for medium cyclones (core pressure between 990 and 1010 hPa) a general decrease in cyclone counts is found. The same kind of changes (a shift for intense cyclones and an overall decrease for the weaker ones) are detected when distinguishing cyclones from their intensity, quantified in terms of ∇2p. Thus, the simulated changes can not solely be attributed to alterations in mean sea level pressure. Instead, corresponding increases in upper-tropospheric baroclinicity suggest more favourable conditions for the development of stronger systems at higher latitudes, especially at the delta regions of the North Atlantic and the North Pacific storm tracks.
Resumo:
The relationship between winter (DJF) rainfall over Portugal and the variable large scale circulation is addressed. It is shown that the poles of the sea level pressure (SLP) field variability associated with rainfall variability are shifted about 15° northward with respect to those used in standard definitions of the North Atlantic Oscillation (NAO). It is suggested that the influence of NAO on rainfall dominantly arises from the associated advection of humidity from the Atlantic Ocean. Rainfall is also related to different aspects of baroclinic wave activity, the variability of the latter quantity in turn being largely dependent on the NAO.
A negative NAO index (leading to increased westerly surface geostrophic winds into Portugal) is associated with an increased number of deep (ps<980 hPa) surface lows over the central North Atlantic and of intermediate (980
Resumo:
Within the warm conveyor belt of extra-tropical cyclones, atmospheric rivers (ARs) are the key synoptic features which deliver the majority of poleward water vapour transport, and are associated with episodes of heavy and prolonged rainfall. ARs are responsible for many of the largest winter floods in the mid-latitudes resulting in major socioeconomic losses; for example, the loss from United Kingdom (UK) flooding in summer/winter 2012 is estimated to be about $1.6 billion in damages. Given the well-established link between ARs and peak river flows for the present day, assessing how ARs could respond under future climate projections is of importance in gauging future impacts from flooding. We show that North Atlantic ARs are projected to become stronger and more numerous in the future scenarios of multiple simulations from five state-of-the-art global climate models (GCMs) in the fifth Climate Model Intercomparison Project (CMIP5). The increased water vapour transport in projected ARs implies a greater risk of higher rainfall totals and therefore larger winter floods in Britain, with increased AR frequency leading to more flood episodes. In the high emissions scenario (RCP8.5) for 2074–2099 there is an approximate doubling of AR frequency in the five GCMs. Our results suggest that the projected change in ARs is predominantly a thermodynamic response to warming resulting from anthropogenic radiative forcing.
Resumo:
We present projections of winter storm-induced insured losses in the German residential building sector for the 21st century. With this aim, two structurally most independent downscaling methods and one hybrid downscaling method are applied to a 3-member ensemble of ECHAM5/MPI-OM1 A1B scenario simulations. One method uses dynamical downscaling of intense winter storm events in the global model, and a transfer function to relate regional wind speeds to losses. The second method is based on a reshuffling of present day weather situations and sequences taking into account the change of their frequencies according to the linear temperature trends of the global runs. The third method uses statistical-dynamical downscaling, considering frequency changes of the occurrence of storm-prone weather patterns, and translation into loss by using empirical statistical distributions. The A1B scenario ensemble was downscaled by all three methods until 2070, and by the (statistical-) dynamical methods until 2100. Furthermore, all methods assume a constant statistical relationship between meteorology and insured losses and no developments other than climate change, such as in constructions or claims management. The study utilizes data provided by the German Insurance Association encompassing 24 years and with district-scale resolution. Compared to 1971–2000, the downscaling methods indicate an increase of 10-year return values (i.e. loss ratios per return period) of 6–35 % for 2011–2040, of 20–30 % for 2041–2070, and of 40–55 % for 2071–2100, respectively. Convolving various sources of uncertainty in one confidence statement (data-, loss model-, storm realization-, and Pareto fit-uncertainty), the return-level confidence interval for a return period of 15 years expands by more than a factor of two. Finally, we suggest how practitioners can deal with alternative scenarios or possible natural excursions of observed losses.
Resumo:
In winter of 2009–2010 south-western Europe was hit by several destructive windstorms. The most important was Xynthia (26–28 February 2010), which caused 64 reported casualties and was classified as the 2nd most expensive natural hazard event for 2010 in terms of economic losses. In this work we assess the synoptic evolution, dynamical characteristics and the main impacts of storm Xynthia, whose genesis, development and path were very uncommon. Wind speed gusts observed at more than 500 stations across Europe are evaluated as well as the wind gust field obtained with a regional climate model simulation for the entire North Atlantic and European area. Storm Xynthia was first identified on 25 February around 30° N, 50° W over the subtropical North Atlantic Ocean. Its genesis occurred on a region characterized by warm and moist air under the influence of a strong upper level wave embedded in the westerlies. Xynthia followed an unusual SW–NE path towards Iberia, France and central Europe. The role of moist air masses on the explosive development of Xynthia is analysed by considering the evaporative sources. A lagrangian model is used to identify the moisture sources, sinks and moisture transport associated with the cyclone during its development phase. The main supply of moisture is located over an elongated region of the subtropical North Atlantic Ocean with anomalously high SST, confirming that the explosive development of storm Xynthia had a significant contribution from the subtropics.
Resumo:
Extratropical cyclones dominate autumn and winter weather over western Europe. The strongest cyclones, often termed windstorms, have a large socio-economic impact due to the strong surface winds and associated storm surges in coastal areas. Here we show that sting jets are a common feature of windstorms; up to a third of the 100 most intense North Atlantic winter windstorms over the last two decades satisfy conditions for sting jets. The sting jet is a mesoscale descending airstream that can cause strong near-surface winds in the dry slot of the cyclone, a region not usually associated with strong winds. Despite their localized transient nature these sting jets can cause significant damage, a prominent example being the storm that devastated southeast England on 16 October 1987. We present the first regional climatology of windstorms with sting jets. Previously analysed sting jet cases appear to have been exceptional in their track over northwest Europe rather than in their strength.
Resumo:
Future changes in the stratospheric circulation could have an important impact on Northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess Northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project – phase 5 (CMIP5) multi-model ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification and the stratospheric wind change on SLP. We find that the inter-model spread in stratospheric wind change contributes substantially to the inter-model spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.
Resumo:
During the winter of 2013/14, much of the UK experienced repeated intense rainfall events and flooding. This had a considerable impact on property and transport infrastructure. A key question is whether the burning of fossil fuels is changing the frequency of extremes, and if so to what extent. We assess the scale of the winter flooding before reviewing a broad range of Earth system drivers affecting UK rainfall. Some drivers can be potentially disregarded for these specific storms whereas others are likely to have increased their risk of occurrence. We discuss the requirements of hydrological models to transform rainfall into river flows and flooding. To determine any general changing flood risk, we argue that accurate modelling needs to capture evolving understanding of UK rainfall interactions with a broad set of factors. This includes changes to multiscale atmospheric, oceanic, solar and sea-ice features, and land-use and demographics. Ensembles of such model simulations may be needed to build probability distributions of extremes for both pre-industrial and contemporary concentration levels of atmospheric greenhouse gases.
Resumo:
MAGIC populations represent one of a new generation of crop genetic mapping resources combining high genetic recombination and diversity. We describe the creation and validation of an eight-parent MAGIC population consisting of 1091 F7 lines of winter-sown wheat (Triticum aestivum L.). Analyses based on genotypes from a 90,000-single nucleotide polymorphism (SNP) array find the population to be well-suited as a platform for fine-mapping quantitative trait loci (QTL) and gene isolation. Patterns of linkage disequilibrium (LD) show the population to be highly recombined; genetic marker diversity among the founders was 74% of that captured in a larger set of 64 wheat varieties, and 54% of SNPs segregating among the 64 lines also segregated among the eight founder lines. In contrast, a commonly used reference bi-parental population had only 54% of the diversity of the 64 varieties with 27% of SNPs segregating. We demonstrate the potential of this MAGIC resource by identifying a highly diagnostic marker for the morphological character "awn presence/absence" and independently validate it in an association-mapping panel. These analyses show this large, diverse, and highly recombined MAGIC population to be a powerful resource for the genetic dissection of target traits in wheat, and it is well-placed to efficiently exploit ongoing advances in phenomics and genomics. Genetic marker and trait data, together with instructions for access to seed, are available at http://www.niab.com/MAGIC/.
Resumo:
During the last decades, several windstorm series hit Europe leading to large aggregated losses. Such storm series are examples of serial clustering of extreme cyclones, presenting a considerable risk for the insurance industry. Clustering of events and return periods of storm series for Germany are quantified based on potential losses using empirical models. Two reanalysis data sets and observations from German weather stations are considered for 30 winters. Histograms of events exceeding selected return levels (1-, 2- and 5-year) are derived. Return periods of historical storm series are estimated based on the Poisson and the negative binomial distributions. Over 4000 years of general circulation model (GCM) simulations forced with current climate conditions are analysed to provide a better assessment of historical return periods. Estimations differ between distributions, for example 40 to 65 years for the 1990 series. For such less frequent series, estimates obtained with the Poisson distribution clearly deviate from empirical data. The negative binomial distribution provides better estimates, even though a sensitivity to return level and data set is identified. The consideration of GCM data permits a strong reduction of uncertainties. The present results support the importance of considering explicitly clustering of losses for an adequate risk assessment for economical applications.
Resumo:
The Mediterranean region has been identified as a climate change "hot-spot" due to a projected reduction in precipitation and fresh water availability which has potentially large socio-economic impacts. To increase confidence in these projections, it is important to physically understand how this precipitation reduction occurs. This study quantifies the impact on winter Mediterranean precipitation due to changes in extratropical cyclones in 17 CMIP5 climate models. In each model, the extratropical cyclones are objectively tracked and a simple approach is applied to identify the precipitation associated to each cyclone. This allows us to decompose the Mediterranean precipitation reduction into a contribution due to changes in the number of cyclones and a contribution due to changes in the amount of precipitation generated by each cyclone. The results show that the projected Mediterranean precipitation reduction in winter is strongly related to a decrease in the number of Mediterranean cyclones. However, the contribution from changes in the amount of precipitation generated by each cyclone are also locally important: in the East Mediterranean they amplify the precipitation trend due to the reduction in the number of cyclones, while in the North Mediterranean they compensate for it. Some of the processes that determine the opposing cyclone precipitation intensity responses in the North and East Mediterranean regions are investigated by exploring the CMIP5 inter-model spread.