219 resultados para Adaptive algorithms
Resumo:
Self-organizing neural networks have been implemented in a wide range of application areas such as speech processing, image processing, optimization and robotics. Recent variations to the basic model proposed by the authors enable it to order state space using a subset of the input vector and to apply a local adaptation procedure that does not rely on a predefined test duration limit. Both these variations have been incorporated into a new feature map architecture that forms an integral part of an Hybrid Learning System (HLS) based on a genetic-based classifier system. Problems are represented within HLS as objects characterized by environmental features. Objects controlled by the system have preset targets set against a subset of their features. The system's objective is to achieve these targets by evolving a behavioural repertoire that efficiently explores and exploits the problem environment. Feature maps encode two types of knowledge within HLS — long-term memory traces of useful regularities within the environment and the classifier performance data calibrated against an object's feature states and targets. Self-organization of these networks constitutes non-genetic-based (experience-driven) learning within HLS. This paper presents a description of the HLS architecture and an analysis of the modified feature map implementing associative memory. Initial results are presented that demonstrate the behaviour of the system on a simple control task.
Resumo:
This paper discusses the use of multi-layer perceptron networks for linear or linearizable, adaptive feedback.control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parametrization. A comparison is made with standard, non-perceptron algorithms, e.g. self-tuning control, and it is shown how gross over-parametrization can occur in the neural network case. Because of the resultant heavy computational burden and poor controller convergence, a strong case is made against the use of neural networks for discrete-time linear control.
Resumo:
Chebyshev optical-filter algorithms for low-cost microcomputers have been improved. An offset ripple is now used for better transmission/matching in low-pass stacks. A prototype for narrowband filters is now more general and nearer practicability.
Resumo:
A nonlinear general predictive controller (NLGPC) is described which is based on the use of a Hammerstein model within a recursive control algorithm. A key contribution of the paper is the use of a novel, one-step simple root solving procedure for the Hammerstein model, this being a fundamental part of the overall tuning algorithm. A comparison is made between NLGPC and nonlinear deadbeat control (NLDBC) using the same one-step nonlinear components, in order to investigate NLGPC advantages and disadvantages.
Resumo:
Genetic algorithms (GAs) have been introduced into site layout planning as reported in a number of studies. In these studies, the objective functions were defined so as to employ the GAs in searching for the optimal site layout. However, few studies have been carried out to investigate the actual closeness of relationships between site facilities; it is these relationships that ultimately govern the site layout. This study has determined that the underlying factors of site layout planning for medium-size projects include work flow, personnel flow, safety and environment, and personal preferences. By finding the weightings on these factors and the corresponding closeness indices between each facility, a closeness relationship has been deduced. Two contemporary mathematical approaches - fuzzy logic theory and an entropy measure - were adopted in finding these results in order to minimize the uncertainty and vagueness of the collected data and improve the quality of the information. GAs were then applied to searching for the optimal site layout in a medium-size government project using the GeneHunter software. The objective function involved minimizing the total travel distance. An optimal layout was obtained within a short time. This reveals that the application of GA to site layout planning is highly promising and efficient.
Resumo:
Peak picking is an early key step in MS data analysis. We compare three commonly used approaches to peak picking and discuss their merits by means of statistical analysis. Methods investigated encompass signal-to-noise ratio, continuous wavelet transform, and a correlation-based approach using a Gaussian template. Functionality of the three methods is illustrated and discussed in a practical context using a mass spectral data set created with MALDI-TOF technology. Sensitivity and specificity are investigated using a manually defined reference set of peaks. As an additional criterion, the robustness of the three methods is assessed by a perturbation analysis and illustrated using ROC curves.
Resumo:
Pseudovivipary is an environmentally induced flowering abnormality in which vegetative shoots replace seminiferous (sexual) inflorescences. Pseudovivipary is usually retained in transplantation experiments, indicating that the trait is not solely induced by the growing environment. Pseudovivipary is the defining characteristic of Festuca vivipara, and arguably the only feature separating this species from its closest seminiferous relative, Festuca ovina. We performed phylogenetic and population genetic analysis on sympatric F. ovina and F. vivipara samples to establish whether pseudovivipary is an adaptive trait that accurately defines the separation of genetically distinct Festuca species. Chloroplast and nuclear marker-based analyses revealed that variation at a geographical level can exceed that between F. vivipara and F. ovina. We deduced that F. vivipara is a recent species that frequently arises independently within F. ovina populations and has not accumulated significant genetic differentiation from its progenitor. We inferred local gene flow between the species. We identified one amplified fragment length polymorphism marker that may be linked to a pseudovivipary-related region of the genome, and several other markers provide evidence of regional local adaptation in Festuca populations. We conclude that F. vivipara can only be appropriately recognized as a morphologically and ecologically distinct species; it lacks genetic differentiation from its relatives. This is the first report of a ‘failure in normal flowering development’ that repeatedly appears to be adaptive, such that the trait responsible for species recognition constantly reappears on a local basis.
Resumo:
The past decade has witnessed explosive growth of mobile subscribers and services. With the purpose of providing better-swifter-cheaper services, radio network optimisation plays a crucial role but faces enormous challenges. The concept of Dynamic Network Optimisation (DNO), therefore, has been introduced to optimally and continuously adjust network configurations, in response to changes in network conditions and traffic. However, the realization of DNO has been seriously hindered by the bottleneck of optimisation speed performance. An advanced distributed parallel solution is presented in this paper, as to bridge the gap by accelerating the sophisticated proprietary network optimisation algorithm, while maintaining the optimisation quality and numerical consistency. The ariesoACP product from Arieso Ltd serves as the main platform for acceleration. This solution has been prototyped, implemented and tested. Real-project based results exhibit a high scalability and substantial acceleration at an average speed-up of 2.5, 4.9 and 6.1 on a distributed 5-core, 9-core and 16-core system, respectively. This significantly outperforms other parallel solutions such as multi-threading. Furthermore, augmented optimisation outcome, alongside high correctness and self-consistency, have also been fulfilled. Overall, this is a breakthrough towards the realization of DNO.
Resumo:
The increasing demand for cheaper-faster-better services anytime and anywhere has made radio network optimisation much more complex than ever before. In order to dynamically optimise the serving network, Dynamic Network Optimisation (DNO), is proposed as the ultimate solution and future trend. The realization of DNO, however, has been hindered by a significant bottleneck of the optimisation speed as the network complexity grows. This paper presents a multi-threaded parallel solution to accelerate complicated proprietary network optimisation algorithms, under a rigid condition of numerical consistency. ariesoACP product from Arieso Ltd serves as the platform for parallelisation. This parallel solution has been benchmarked and results exhibit a high scalability and a run-time reduction by 11% to 42% based on the technology, subscriber density and blocking rate of a given network in comparison with the original version. Further, it is highly essential that the parallel version produces equivalent optimisation quality in terms of identical optimisation outputs.
Resumo:
A connection between a fuzzy neural network model with the mixture of experts network (MEN) modelling approach is established. Based on this linkage, two new neuro-fuzzy MEN construction algorithms are proposed to overcome the curse of dimensionality that is inherent in the majority of associative memory networks and/or other rule based systems. The first construction algorithm employs a function selection manager module in an MEN system. The second construction algorithm is based on a new parallel learning algorithm in which each model rule is trained independently, for which the parameter convergence property of the new learning method is established. As with the first approach, an expert selection criterion is utilised in this algorithm. These two construction methods are equivalent in their effectiveness in overcoming the curse of dimensionality by reducing the dimensionality of the regression vector, but the latter has the additional computational advantage of parallel processing. The proposed algorithms are analysed for effectiveness followed by numerical examples to illustrate their efficacy for some difficult data based modelling problems.
Resumo:
This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.
Resumo:
A new parameter-estimation algorithm, which minimises the cross-validated prediction error for linear-in-the-parameter models, is proposed, based on stacked regression and an evolutionary algorithm. It is initially shown that cross-validation is very important for prediction in linear-in-the-parameter models using a criterion called the mean dispersion error (MDE). Stacked regression, which can be regarded as a sophisticated type of cross-validation, is then introduced based on an evolutionary algorithm, to produce a new parameter-estimation algorithm, which preserves the parsimony of a concise model structure that is determined using the forward orthogonal least-squares (OLS) algorithm. The PRESS prediction errors are used for cross-validation, and the sunspot and Canadian lynx time series are used to demonstrate the new algorithms.
Resumo:
A new autonomous ship collision free (ASCF) trajectory navigation and control system has been introduced with a new recursive navigation algorithm based on analytic geometry and convex set theory for ship collision free guidance. The underlying assumption is that the geometric information of ship environment is available in the form of a polygon shaped free space, which may be easily generated from a 2D image or plots relating to physical hazards or other constraints such as collision avoidance regulations. The navigation command is given as a heading command sequence based on generating a way point which falls within a small neighborhood of the current position, and the sequence of the way points along the trajectory are guaranteed to lie within a bounded obstacle free region using convex set theory. A neurofuzzy network predictor which in practice uses only observed input/output data generated by on board sensors or external sensors (or a sensor fusion algorithm), based on using rudder deflection angle for the control of ship heading angle, is utilised in the simulation of an ESSO 190000 dwt tanker model to demonstrate the effectiveness of the system.