137 resultados para video object segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A deterministic prototype video deghoster is presented which is capable of calculating all the multipath channel distortion characteristics in one single pass and subsequently removing the multipath distortions, commonly termed ghosts. Within the system, a channel identification algorithm finds in isolation all the ghost components while a dedicated DSP filter subsystem is capable of removing ghosts in real time. The results from the system are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under the multipath conditions of terrestrial television transmission, ghost carriers cause additive information to be generated by the VSB filter within the television receiver. By analysis of this a priori effect of the VSB filter under a ghosted condition the inphase and phase quadrature detected video signals are defined. Derived from these results, a new algorithm based upon correlation techniques is presented which finds the characteristics of the amplitude and delay of individual ghosts. These characteristics are then passed to a deterministic deghoster to minimise ghost effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A form of three-dimensional X-ray imaging, called Object 3-D, is introduced, where the relevant subject material is represented as discrete ‘objects’. The surface of each such object is derived accurately from the projections of its outline, and of its other discontinuities, in about ten conventional X-ray views, distributed in solid angle. This technique is suitable for many applications, and permits dramatic savings in radiation exposure and in data acquisition and manipulation. It is well matched to user-friendly interactive displays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy. The accuracy was reduced in urban areas partly because of TerraSAR-X’s restricted visibility of the ground surface due to radar shadow and layover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study extends product placement research by testing the impact of interactivity on product placement effectiveness. The results suggest that when children cannot interact with the placements in video games, perceptual fluency is the underlying mechanism leading to positive affect. Therefore, the effects are only evident in a stimulus-based choice where the same stimulus is provided as a cue. However, when children have the opportunity to interact with the placements in video games, they may be influenced by conceptual fluency. Thus, placements are still effective in a memory-based choice where no stimulus is provided as a cue. Keywords: Perceptual fluency; Conceptual fluency; Video games; Interactivity; Children; Product placement

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investments in direct real estate are inherently difficult to segment compared to other asset classes due to the complex and heterogeneous nature of the asset. The most common segmentation in real estate investment analysis relies on property sector and geographical region. In this paper, we compare the predictive power of existing industry classifications with a new type of segmentation using cluster analysis on a number of relevant property attributes including the equivalent yield and size of the property as well as information on lease terms, number of tenants and tenant concentration. The new segments are shown to be distinct and relatively stable over time. In a second stage of the analysis, we test whether the newly generated segments are able to better predict the resulting financial performance of the assets than the old dichotomous segments. Applying both discriminant and neural network analysis we find mixed evidence for this hypothesis. Overall, we conclude from our analysis that each of the two approaches to segmenting the market has its strengths and weaknesses so that both might be applied gainfully in real estate investment analysis and fund management.