116 resultados para surface layer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface drag force produced by trapped lee waves and upward propagating waves in non-hydrostatic stratified flow over a mountain ridge is explicitly calculated using linear theory for a two-layer atmosphere with piecewise-constant static stability and wind speed profiles. The behaviour of the drag normalized by its hydrostatic single-layer reference value is investigated as a function of the ratio of the Scorer parameters in the two layers l_2/l_1 and of the corresponding dimensionless interface height l_1 H, for selected values of the dimensionless ridge width l_1 a and ratio of wind speeds in the two layers. When l_2/l_1 → 1, the propagating wave drag approaches 1 in approximately hydrostatic conditions, and the trapped lee wave drag vanishes. As l_2/l_1 decreases, the propagating wave drag progressively displays an oscillatory behaviour with l_1 H, with maxima of increasing magnitude due to constructive interference of reflected waves in the lower layer. The trapped lee wave drag shows localized maxima associated with each resonant trapped lee wave mode, occurring for small l_2/l_1 and slightly higher values of l_1 H than the propagating wave drag maxima. As l1a decreases, i.e. the flow becomes more non-hydrostatic, the propagating wave drag decreases and the regions of non-zero trapped lee wave drag extend to higher l_2/l_1. These results are confirmed by numerical simulations for l_2/l_1 = 0.2. In parameter ranges of meteorological relevance, the trapped lee wave drag may have a magnitude comparable to that of propagating wave drag, and be larger than the reference single-layer drag. This may have implications for drag parametrization in global climate and weather-prediction models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorption of glycine on Ptf111g under UHV conditions and in different aqueous environments was studied by XPS (UHV and ambient pressure) and NEXAFS. Under UHV conditions, glycine adsorbs in its neutral molecular state up to about 0.15 ML. Further deposition leads to the formation of an additional zwitterionic species, which is in direct contact with the substrate surface, followed by the growth of multilayers, which also consist of zwitterions. The neutral surface species is most stable and decomposes at 360 K through a multi-step process which includes the formation of methylamine and carbon monoxide. When glycine and water are co-adsorbed in UHV at low temperatures (< 170 K) inter-layer diffusion is inhibited and the surface composition depends on the adsorption sequence. Water adsorbed on top of a glycine layer does not lead to significant changes in its chemical state. When glycine is adsorbed on top of a pre-adsorbed chemisorbed water layer or thick ice layer, however, it is found in its zwitterionic state, even at low coverage. No difference is seen in the chemical state of glycine when the layers are exposed to ambient water vapor pressure up to 0.2 Torr at temperatures above 300 K. Also the decomposition temperature stays the same, 360 K, irrespective of the water vapor pressure. Only the reaction path of the decomposition products is affected by ambient water vapor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we use molecular dynamics to answer a classical question: how does the surface tension on a liquid/gas interface appear? After defining surface tension from the first principles and performing several consistency checks, we perform a dynamic experiment with a single simple liquid nanodroplet. At time zero, we remove all molecules of the interfacial layer of molecules, creating a fresh bare interface with the bulk arrangement of molecules. After that the system evolves towards equilibrium, and the expected surface tension is re-established. We found that the system relaxation consists of three distinct stages. First, the mechanical balance is quickly re-established. During this process the notion of surface tension is meaningless. In the second stage, the surface tension equilibrates, and the density profile broadens to a value which we call “intrinsic” interfacial width. During the third stage, the density profile continues to broaden due to capillary wave excitations, which does not however affect the surface tension.We have observed this scenario for monatomic Lennard-Jones (LJ) liquid as well as for binary LJ mixtures at different temperatures, monitoring a wide range of physical observables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new technique for objective classification of boundary layers is applied to ground-based vertically pointing Doppler lidar and sonic anemometer data. The observed boundary layer has been classified into nine different types based on those in the Met Office ‘Lock’ scheme, using vertical velocity variance and skewness, along with attenuated backscatter coefficient and surface sensible heat flux. This new probabilistic method has been applied to three years of data from Chilbolton Observatory in southern England and a climatology of boundary-layer type has been created. A clear diurnal cycle is present in all seasons. The most common boundary-layer type is stable with no cloud (30.0% of the dataset). The most common unstable type is well mixed with no cloud (15.4%). Decoupled stratocumulus is the third most common boundary-layer type (10.3%) and cumulus under stratocumulus occurs 1.0% of the time. The occurrence of stable boundary-layer types is much higher in the winter than the summer and boundary-layer types capped with cumulus cloud are more prevalent in the warm seasons. The most common diurnal evolution of boundary-layer types, occurring on 52 days of our three-year dataset, is that of no cloud with the stability changing from stable to unstable during daylight hours. These results are based on 16393 hours, 62.4% of the three-year dataset, of diagnosed boundary-layer type. This new method is ideally suited to long-term evaluation of boundary-layer type parametrisations in weather forecast and climate models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data from various stations having different measurement record periods between 1988 and 2007 are analyzed to investigate the surface ozone concentration, long-term trends, and seasonal changes in and around Ireland. Time series statistical analysis is performed on the monthly mean data using seasonal and trend decomposition procedures and the Box-Jenkins approach (autoregressive integrated moving average). In general, ozone concentrations in the Irish region are found to have a negative trend at all sites except at the coastal sites of Mace Head and Valentia. Data from the most polluted Dublin city site have shown a very strong negative trend of −0.33 ppb/yr with a 95% confidence limit of 0.17 ppb/yr (i.e., −0.33 ± 0.17) for the period 2002−2007, and for the site near the city of Cork, the trend is found to be −0.20 ± 0.11 ppb/yr over the same period. The negative trend for other sites is more pronounced when the data span is considered from around the year 2000 to 2007. Rural sites of Wexford and Monaghan have also shown a very strong negative trend of −0.99 ± 0.13 and −0.58 ± 0.12, respectively, for the period 2000−2007. Mace Head, a site that is representative of ozone changes in the air advected from the Atlantic to Europe in the marine planetary boundary layer, has shown a positive trend of about +0.16 ± 0.04 ppb per annum over the entire period 1988−2007, but this positive trend has reduced during recent years (e.g., in the period 2001−2007). Cluster analysis for back trajectories are performed for the stations having a long record of data, Mace Head and Lough Navar. For Mace Head, the northern and western clean air sectors have shown a similar positive trend (+0.17 ± 0.02 ppb/yr for the northern sector and +0.18 ± 0.02 ppb/yr for the western sector) for the whole period, but partial analysis for the clean western sector at Mace Head shows different trends during different time periods with a decrease in the positive trend since 1988 indicating a deceleration in the ozone trend for Atlantic air masses entering Europe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A better understanding of links between the properties of the urban environment and the exchange to the atmosphere is central to a wide range of applications. The numerous measurements of surface energy balance data in urban areas enable intercomparison of observed fluxes from distinct environments. This study analyzes a large database in two new ways. First, instead of normalizing fluxes using net all-wave radiation only the incoming radiative fluxes are used, to remove the surface attributes from the denominator. Second, because data are now available year-round, indices are developed to characterize the fraction of the surface (built; vegetation) actively engaged in energy exchanges. These account for shading patterns within city streets and seasonal changes in vegetation phenology; their impact on the partitioning of the incoming radiation is analyzed. Data from 19 sites in North America, Europe, Africa, and Asia (including 6-yr-long observation campaigns) are used to derive generalized surface–flux relations. The midday-period outgoing radiative fraction decreases with an increasing total active surface index, the stored energy fraction increases with an active built index, and the latent heat fraction increases with an active vegetated index. Parameterizations of these energy exchange ratios as a function of the surface indices [i.e., the Flux Ratio–Active Index Surface Exchange (FRAISE) scheme] are developed. These are used to define four urban zones that characterize energy partitioning on the basis of their active surface indices. An independent evaluation of FRAISE, using three additional sites from the Basel Urban Boundary Layer Experiment (BUBBLE), yields accurate predictions of the midday flux partitioning at each location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For an increasing number of applications, mesoscale modelling systems now aim to better represent urban areas. The complexity of processes resolved by urban parametrization schemes varies with the application. The concept of fitness-for-purpose is therefore critical for both the choice of parametrizations and the way in which the scheme should be evaluated. A systematic and objective model response analysis procedure (Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm) is used to assess the fitness of the single-layer urban canopy parametrization implemented in the Weather Research and Forecasting (WRF) model. The scheme is evaluated regarding its ability to simulate observed surface energy fluxes and the sensitivity to input parameters. Recent amendments are described, focussing on features which improve its applicability to numerical weather prediction, such as a reduced and physically more meaningful list of input parameters. The study shows a high sensitivity of the scheme to parameters characterizing roof properties in contrast to a low response to road-related ones. Problems in partitioning of energy between turbulent sensible and latent heat fluxes are also emphasized. Some initial guidelines to prioritize efforts to obtain urban land-cover class characteristics in WRF are provided. Copyright © 2010 Royal Meteorological Society and Crown Copyright.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An urban energy and water balance model is presented which uses a small number of commonly measured meteorological variables and information about the surface cover. Rates of evaporation-interception for a single layer with multiple surface types (paved, buildings, coniferous trees and/or shrubs, deciduous trees and/or shrubs, irrigated grass, non-irrigated grass and water) are calculated. Below each surface type, except water, there is a single soil layer. At each time step the moisture state of each surface is calculated. Horizontal water movements at the surface and in the soil are incorporated. Particular attention is given to the surface conductance used to model evaporation and its parameters. The model is tested against direct flux measurements carried out over a number of years in Vancouver, Canada and Los Angeles, USA. At all measurement sites the model is able to simulate the net all-wave radiation and turbulent sensible and latent heat well (RMSE = 25–47 W m−2, 30–64 and 20–56 W m−2, respectively). The model reproduces the diurnal cycle of the turbulent fluxes but typically underestimates latent heat flux and overestimates sensible heat flux in the day time. The model tracks measured surface wetness and simulates the variations in soil moisture content. It is able to respond correctly to short-term events as well as annual changes. The largest uncertainty relates to the determination of surface conductance. The model has the potential be used for multiple applications; for example, to predict effects of regulation on urban water use, landscaping and planning scenarios, or to assess climate mitigation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We characterize near-surface ocean diurnal warm-layer events, using satellite observations and fields from numerical weather forecasting. The study covers April to September, 2006, over the area 11°W to 17°E and 35°N to 57°N, with 0.1° cells. We use hourly satellite SSTs from which peak amplitudes of diurnal cycles in SST (dSSTs) can be estimated with error ∼0.3 K. The diurnal excursions of SST observed are spatially and temporally coherent. The largest dSSTs exceed 6 K, affect 0.01% of the surface, and are seen in the Mediterranean, North and Irish Seas. There is an anti-correlation between the magnitude and the horizontal length scale of dSST events. Events wherein dSST exceeds 4 K have length scales of ≤40 km. From the frequency distribution of different measures of wind-speed minima, we infer that extreme dSST maxima arise where conditions of low wind speed are sustained from early morning to mid afternoon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A statistical model is derived relating the diurnal variation of sea surface temperature (SST) to the net surface heat flux and surface wind speed from a numerical weather prediction (NWP) model. The model is derived using fluxes and winds from the European Centre for Medium-Range Weather Forecasting (ECMWF) NWP model and SSTs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). In the model, diurnal warming has a linear dependence on the net surface heat flux integrated since (approximately) dawn and an inverse quadratic dependence on the maximum of the surface wind speed in the same period. The model coefficients are found by matching, for a given integrated heat flux, the frequency distributions of the maximum wind speed and the observed warming. Diurnal cooling, where it occurs, is modelled as proportional to the integrated heat flux divided by the heat capacity of the seasonal mixed layer. The model reproduces the statistics (mean, standard deviation, and 95-percentile) of the diurnal variation of SST seen by SEVIRI and reproduces the geographical pattern of mean warming seen by the Advanced Microwave Scanning Radiometer (AMSR-E). We use the functional dependencies in the statistical model to test the behaviour of two physical model of diurnal warming that display contrasting systematic errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the (001) surface structure of lithium titanate (Li2TiO3) using auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and scanning tunneling microscopy (STM). Li2TiO3 is a potential fusion reactor blanket material. After annealing at 1200 K, LEED demonstrated that the Li2TiO3(001) surface was well ordered and not reconstructed. STM imaging showed that terraces are separated in height by about 0.3 nm suggesting a single termination layer. Moreover, hexagonal patterns with a periodicity of ∼0.4 nm are observed. On the basis of molecular dynamics (MD) simulations, these are interpreted as a dynamic arrangement of Li atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The parameterization of surface heat-flux variability in urban areas relies on adequate representation of surface characteristics. Given the horizontal resolutions (e.g. ≈0.1–1km) currently used in numerical weather prediction (NWP) models, properties of the urban surface (e.g. vegetated/built surfaces, street-canyon geometries) often have large spatial variability. Here, a new approach based on Urban Zones to characterize Energy partitioning (UZE) is tested within a NWP model (Weather Research and Forecasting model;WRF v3.2.1) for Greater London. The urban land-surface scheme is the Noah/Single-Layer Urban Canopy Model (SLUCM). Detailed surface information (horizontal resolution 1 km)in central London shows that the UZE offers better characterization of surface properties and their variability compared to default WRF-SLUCM input parameters. In situ observations of the surface energy fluxes and near-surface meteorological variables are used to select the radiation and turbulence parameterization schemes and to evaluate the land-surface scheme

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of urban land-surface models have been developed in recent years to satisfy the growing requirements for urban weather and climate interactions and prediction. These models vary considerably in their complexity and the processes that they represent. Although the models have been evaluated, the observational datasets have typically been of short duration and so are not suitable to assess the performance over the seasonal cycle. The First International Urban Land-Surface Model comparison used an observational dataset that spanned a period greater than a year, which enables an analysis over the seasonal cycle, whilst the variety of models that took part in the comparison allows the analysis to include a full range of model complexity. The results show that, in general, urban models do capture the seasonal cycle for each of the surface fluxes, but have larger errors in the summer months than in the winter. The net all-wave radiation has the smallest errors at all times of the year but with a negative bias. The latent heat flux and the net storage heat flux are also underestimated, whereas the sensible heat flux generally has a positive bias throughout the seasonal cycle. A representation of vegetation is a necessary, but not sufficient, condition for modelling the latent heat flux and associated sensible heat flux at all times of the year. Models that include a temporal variation in anthropogenic heat flux show some increased skill in the sensible heat flux at night during the winter, although their daytime values are consistently overestimated at all times of the year. Models that use the net all-wave radiation to determine the net storage heat flux have the best agreement with observed values of this flux during the daytime in summer, but perform worse during the winter months. The latter could result from a bias of summer periods in the observational datasets used to derive the relations with net all-wave radiation. Apart from these models, all of the other model categories considered in the analysis result in a mean net storage heat flux that is close to zero throughout the seasonal cycle, which is not seen in the observations. Models with a simple treatment of the physical processes generally perform at least as well as models with greater complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many urban surface energy balance models now exist. These vary in complexity from simple schemes that represent the city as a concrete slab, to those which incorporate detailed representations of momentum and energy fluxes distributed within the atmospheric boundary layer. While many of these schemes have been evaluated against observations, with some models even compared with the same data sets, such evaluations have not been undertaken in a controlled manner to enable direct comparison. For other types of climate model, for instance the Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) experiments (Henderson-Sellers et al., 1993), such controlled comparisons have been shown to provide important insights into both the mechanics of the models and the physics of the real world. This paper describes the progress that has been made to date on a systematic and controlled comparison of urban surface schemes. The models to be considered, and their key attributes, are described, along with the methodology to be used for the evaluation.