95 resultados para robot teams
Resumo:
A growing awareness of the potential for machine-mediated neurorehabilitation has led to several novel concepts for delivering these therapies. To get from laboratory demonstrators and prototypes to the point where the concepts can be used by clinicians in practice still requires significant additional effort, not least in the requirement to assess and measure the impact of any proposed solution. To be widely accepted a study is required to use validated clinical measures but these tend to be subjective, costly to administer and may be insensitive to the effect of the treatment. Although this situation will not change, there is good reason to consider both clinical and mechanical assessments of recovery. This article outlines the problems in measuring the impact of an intervention and explores the concept of providing more mechanical assessment techniques and ultimately the possibility of combining the assessment process with aspects of the intervention.
Resumo:
Existing research on synchronous remote working in CSCW has highlighted the troubles that can arise because actions at one site are (partially) unavailable to remote colleagues. Such ‘local action’ is routinely characterised as a nuisance, a distraction, subordinate and the like. This paper explores interconnections between ‘local action’ and ‘distributed work’ in the case of a research team virtually collocated through ‘MiMeG’. MiMeG is an e-Social Science tool that facilitates ‘distributed data sessions’ in which social scientists are able to remotely collaborate on the real-time analysis of video data. The data are visible and controllable in a shared workspace and participants are additionally connected via audio conferencing. The findings reveal that whilst the (partial) unavailability of local action is at times problematic, it is also used as a resource for coordinating work. The paper considers how local action is interactionally managed in distributed data sessions and concludes by outlining implications of the analysis for the design and study of technologies to support group-to-group collaboration.
Resumo:
Octopus skin samples were tested under quasi-static and scissor cutting conditions to measure the in-plane material properties and fracture toughness. Samples from all eight arms of one octopus were tested statically to investigate how properties vary from arm to arm. Another nine octopus skins were measured to study the influence of body mass on skin properties. Influence of specimen location on skin mechanical properties was also studied. Material properties of skin, i.e. the Young's modulus, ultimate stress, failure strain and fracture toughness have been plotted against the position of skin along the length of arm or body. Statistical studies were carried out to help analyzing experimental data obtained. Results of this work will be used as guidelines for the design and development of artificial skins for an octopus-inspired robot.
Resumo:
In order to develop skin artefact for an octopus-inspired robot arm, which is designed to be able to elongate 60% of its original length, silicone rubber and knitted nylon sheet were selected to manufacture an artificial skin, due to their higher elastic strain and high flexibility. Tensile and scissors cutting tests were conducted to characterise the matrix and reinforcing materials and the skin artefact. Material properties of the individual and the composite materials were compared with the measured properties of real octopus skin presented in Part I. The Young’s modulus of the skin should be below 20 MPa and the elastic strain range should be over 60%. The fracture toughness should be at least 0.9 kJ·m−2. Tubes made of the skin artefact filled with liquid were tested to study volume change under deformation. Finite element analysis model was developed to simulate the material and arm structure under tensile loading. Results show that the skin artefact developed has similar mechanical properties as the real octopus skin and satisfies all the design specifications of the OCTOPUS robot.
Resumo:
This paper describes the integration of constrained predictive control and computed-torque control, and its application on a six degree-of-freedom PUMA 560 manipulator arm. The real-time implementation was based on SIMULINK, with the predictive controller and the computed-torque control law implemented in the C programming language. The constrained predictive controller solved a quadratic programming problem at every sampling interval, which was as short as 10 ms, using a prediction horizon of 150 steps and an 18th order state space model.
Resumo:
The robot control problem is discussed with regard to controller implementation on a multitransputer array. Some high-performance aspects required of such controllers are described, with particular reference to robot force control. The implications for the architecture required for controllers based on computed torque are discussed and an example is described. The idea of treating a transputer array as a virtual bus is put forward for the implementation of fast real-time controllers. An example is given of controlling a Puma 560 industrial robot. Some of the practical considerations for using transputers for such control are described.
Resumo:
Active robot force control requires some form of dynamic inner loop control for stability. The author considers the implementation of position-based inner loop control on an industrial robot fitted with encoders only. It is shown that high gain velocity feedback for such a robot, which is effectively stationary when in contact with a stiff environment, involves problems beyond the usual caveats on the effects of unknown environment stiffness. It is shown that it is possible for the controlled joint to become chaotic at very low velocities if encoder edge timing data are used for velocity measurement. The results obtained indicate that there is a lower limit on controlled velocity when encoders are the only means of joint measurement. This lower limit to speed is determined by the desired amount of loop gain, which is itself determined by the severity of the nonlinearities present in the drive system.
Resumo:
A parallel processor architecture based on a communicating sequential processor chip, the transputer, is described. The architecture is easily linearly extensible to enable separate functions to be included in the controller. To demonstrate the power of the resulting controller some experimental results are presented comparing PID and full inverse dynamics on the first three joints of a Puma 560 robot. Also examined are some of the sample rate issues raised by the asynchronous updating of inertial parameters, and the need for full inverse dynamics at every sample interval is questioned.
Resumo:
Soft skin artefacts made of knitted nylon reinforced silicon rubber were fabricated mimicking octopus skin. A combination of ecoflex 0030 and 0010 were used as matrix of the composite to obtain the right stiffness for the skin artefacts. Material properties were characterised using static uniaxial tension and scissors cutting tests. Two types of tactile sensors were developed to detect normal contact; one used quantum tunnelling composite materials and the second was fabricated from silicone rubber and a conductive textile. Sensitivities of the sensors were tested by applying different modes of loading and the soft sensors were incorporated into the skin prototype. Passive suckers were developed and tested against squid suckers. An integrated skin prototype with embedded deformable sensors and attached suckers developed for the arm of an octopus inspired robot is also presented.
Resumo:
This paper provides some additional evidence in support of the hypothesis that robot therapies are clinically beneficial in neurorehabilitation. Although only 4 subjects were included in the study, the design of the intervention and the measures were done so as to minimise bias. The results are presented as single case studies, and can only be interpreted as such due to the study size. The intensity of intervention was 16 hours and the therapy philosophy (based on Carr and Shepherd) was that coordinated movements are preferable to joint based therapies, and that coordinating distal movements (in this case grasps) helps not only to recover function in these areas, but has greater value since the results are immediately transferable to daily skills such as reach and grasp movements.
Resumo:
The majority of team leadership studies have ignored the specific context in which that leadership takes place and the cyclical correlation of inputs and processes on ongoing performance. It is our contention that leadership is a mediator of team processes and team effectiveness on ongoing functioning of multidisciplinary teams (MDT). The members of 126 multidisciplinary teams responded to a survey on several aspects related to the functioning and leadership of their teams. The results support the hypothesis that leadership does mediate the relationship between reflexivity and effectiveness (i.e. team management performance, boundary spanning and satisfaction) within the team. Theoretically, these findings challenge those of linear models that typically analyse the impact of leadership as something that happens in isolation. Future research should describe and consider not just the team type and tasks but also investigate the roles that context and time play in team leadership.