129 resultados para reading in words to legislation
Resumo:
Background: Research on depression has identified hyperactivity of the HPA axis as a potential contributory factor to the intergenerational transmission of affective symptoms. However, this has not yet been examined in the context of social phobia. The current study compared HPA axis activity in response to a universal social stressor (starting school) in children of 2 groups of women: one with social phobia and one with no history of anxiety (comparison group). To determine specificity of effects of maternal social phobia, a third group of children were also examined whose mothers had generalised anxiety disorder (GAD). Method: Children provided salivary cortisol samples in the morning, afternoon and at bedtime across 3 time-blocks surrounding the school start: a month before starting school (baseline), the first week at school (stress response), and the end of the first school term (stress recovery). Child behavioural inhibition at 14 months was also assessed to explore the influence of early temperament on later stress responses. Results: All children displayed an elevation in morning and afternoon cortisol from baseline during the first week at school, which remained elevated until the end of the first term. Children in the social phobia group, however, also displayed an equivalent elevation in bedtime cortisol, which was not observed for comparison children or for children of mothers with GAD. Children in the social phobia group who were classified as 'inhibited' at 14 months displayed significantly higher afternoon cortisol levels overall. Summary: A persistent stress response to school in the morning and afternoon is typical for all children, but children of mothers with social phobia also display atypical elevations in evening cortisol levels when at school - signalling long-term disruption of the circadian rhythm in HPA axis activity. This is the first study to report HPA axis disruption in children at risk of developing social phobia, and future research should aim to determine whether this represents a pathway for symptom development, taking early temperament into account.
Resumo:
Genome-wide association studies have identified SNPs reproducibly associated with type 2 diabetes (T2D). We examined the effect of genetic predisposition to T2D on insulin sensitivity and secretion using detailed phenotyping in overweight individuals with no diagnosis of T2D. Furthermore, we investigated whether this genetic predisposition modifies the responses in beta-cell function and insulin sensitivity to a 24-week dietary intervention. We genotyped 25 T2D-associated SNPs in 377 white participants from the RISCK study. Participants underwent an IVGTT prior to and following a dietary intervention that aimed to lower saturated fat intake by replacement with monounsaturated fat or carbohydrate. We composed a genetic predisposition score (T2D-GPS) by summing the T2D risk-increasing alleles of the 25 SNPs and tested for association with insulin secretion and sensitivity at baseline, and with the change in response to the dietary intervention. At baseline, a higher T2D-GPS was associated with lower acute insulin secretion (AIRg 4% lower/risk allele, P = 0.006) and lower insulin secretion for a given level of insulin sensitivity, assessed by the disposition index (DI 5% lower/risk allele, P = 0.002), but not with insulin sensitivity (Si). T2D-GPS did not modify changes in insulin secretion, insulin sensitivity or the disposition index in response to the dietary interventions to lower saturated fat. Participants genetically predisposed to T2D have an impaired ability to compensate for peripheral insulin resistance with insulin secretion at baseline, but this does not modify the response to a reduction in dietary saturated fat through iso-energetic replacement with carbohydrate or monounsaturated fat.
Resumo:
Background: The characterization of phytoestrogen intake and cancer risk has been hindered by the absence of accurate dietary phytoestrogen values. Objective: We examined the risk of breast, colorectal, and prostate cancers relative to phytoestrogen intake on the basis of a comprehensive database. Design: Demographic and anthropometric characteristics, a medical history, and 7-d records of diet were collected prospectively from participants (aged 40–79 y) in the European Prospective Investigation into Cancer and Nutrition–Norfolk (EPIC-Norfolk). Five hundred nine food items were analyzed by liquid chromatography–mass spectrometry/mass spectrometry, and 13C3-labeled internal standards were analyzed for isoflavones (genistein, daidzein, glycitein, biochanin A, and formononetin), lignans (secoisolariciresinol and matairesinol), and enterolignans from gut microbial metabolism in animal food sources (equol and enterolactone). From the direct analysis, values for 10,708 foods were calculated. Odds ratios (ORs) for breast (244 cases, 941 controls), colorectal (221 cases, 886 controls), and prostate (204 cases, 812 controls) cancers were calculated relative to phytoestrogen intake. Results: Phytoestrogen intake was not associated with breast cancer among women or colorectal cancer among men. Among women, colorectal cancer risk was inversely associated with enterolactone (OR: 0.33; 95% CI: 0.14, 0.74) and total enterolignans (OR: 0.32; 95% CI: 0.13, 0.79), with a positive trend detected for secoisolariciresinol (OR: 1.60; 95% CI: 0.96, 2.69). A positive trend between enterolignan intake and prostate cancer risk (OR: 1.27; 95% CI: 0.97, 1.66) was attenuated after adjustment for dairy intake (OR: 1.19; 95% CI: 0.77, 1.82). Conclusion: Dietary phytoestrogens may contribute to the risk of colorectal cancer among women and prostate cancer among men.
Resumo:
It is well established that the glutamate decarboxylase (GAD) system is central to the survival of Listeria monocytogenes at low pH, both in acidic foods and within the mammalian stomach. The accepted model proposes that under acidic conditions extracellular glutamate is transported into the cell in exchange for an intracellular gamma-aminobutyrate (GABA(i)). The glutamate is then decarboxylated to GABA(i), a reaction that consumes a proton, thereby helping to prevent acidification of the cytoplasm. In this study, we show that glutamate supplementation had no influence on either growth rate at pH 5.0 or survival at pH 2.5 when L. monocytogenes 10403S was grown in a chemically defined medium (DM). In response to acidification, cells grown in DM failed to efflux GABA, even when glutamate was added to the medium. In contrast, in brain heart infusion (BHI), the same strain produced significant extracellular GABA (GABA(e)) in response to acidification. In addition, high levels of GABA(i) (>80 mM) were found in the cytoplasm in response to low pH in both growth media. Medium-swap and medium-mixing experiments revealed that the GABA efflux apparatus was nonfunctional in DM, even when glutamate was present. It was also found that the GadT2D2 antiporter/decarboxylase system was transcribed poorly in DM-grown cultures while overexpression of gadD1T1 and gadD3 occurred in response to pH 3.5. Interestingly, BHI-grown cells did not respond with upregulation of any of the GAD system genes when challenged at pH 3.5. The accumulation of GABA(i) in cells grown in DM in the absence of extracellular glutamate indicates that intracellular glutamate is the source of the GABA(i). These results demonstrate that GABA production can be uncoupled from GABA efflux, a finding that alters the way we should view the operation of bacterial GAD systems.
Resumo:
Biomass partitioning of cacao (Theobroma cacao L.) was studied in seven clones and five hybrids in a replicated experiment in Bahia, Brazil. Over an eighteen month period, a seven- fold difference in dry bean yield was demonstrated between genotypes, ranging from the equivalent of 200 to 1389 kg.ha-1. During the same interval, the increase in trunk cross-sectional area ranged from 11.1 cm2 for clone EEG-29 to 27.6 cm2 for hybrid PA-150 * MA-15. Yield efficiency increment (the ratio of cumulative yield to the increase in trunk circumference), which indicated partitioning between the vegetative and reproductive components, ranged from 0.008 kg.cm-2 for clone CP-82 to 0.08 kg.cm-2 for clone EEG-29. An examination of biomass partitioning within the pod of the seven clones revealed that the beans accounted for between 32.0% (CP-82) and 44.5% (ICS-9) of the pod biomass. The study demonstrated the potential for yield improvement in cacao by selectively breeding for more efficient partitioning to the yield component.
Resumo:
A diary study tracked the paper documents received by nine UK informants over one month. Informants gave simple ratings of individual documents’ attractiveness and the ease of understanding them; more detailed reactions to the documents were gathered through informant diaries and follow-up interviews. The detailed reactions extended beyond the feedback gathered through the rating task. Informants showed sensitivity to the content, language, design and circumstances of receipt of documents, with indications that they developed opinions of originating organizations based on their experience of using their documents. Documents that failed to provide all the information needed, that failed to make their intentions clear (or obscured their intentions) or that were perceived as miss-targeted received negative comment. Repeat experiences of receiving either well- or poorly-conceived documents strengthened informant reactions to individual originating organizations. The paper concludes with recommendations for steps document originators, writers and designers need to take to prepare documents that enhance organization to consumer communication. We recommend that organizations evaluate and act on consumers’ reactions to their documents, beyond user testing in document development or scorecard ratings in use.
Resumo:
Biofilm formation on abiotic surfaces may provide a source of microbial contamination and may also enhance microbial environmental survival. The role of fimbrial expression by Shiga toxin-producing Escherichia coli (STEC) in biofilm formation is poorly understood. This study aimed to investigate the role of STEC type 1 and curli fimbriae in adhesion to and biofilm formation on abiotic surfaces. None of 13 O157:H7 isolates expressed either fimbrial type whereas 11 of 13 and 5 of 13 non-O157 STEC elaborated type 1 fimbriae and curli fimbriae, respectively. Mutants made by allelic exchange of a diarrhoeal non-O157 STEC isolate, O128:H2 (E41509), unable to elaborate type 1 and curli fimbriae were made for adherence and biofilm assays. Elaboration of type 1 fimbriae was necessary for the adhesion to abiotic surfaces whereas curliation was associated with both adherence and subsequent biofilm formation. STEC O157:H7 adhered to thermanox and glass but poorly to polystyrene. Additionally, STEC O157:H7 failed to form biofilms. These data indicate that certain STEC isolates are able to form biofilms and that the elaboration of curli fimbriae may enhance biofilm formation leading to possible long-term survival and a potential source of human infection.
Resumo:
Farming freshwater prawns with fish in rice fields is widespread in coastal regions of southwest Bangladesh because of favourable resources and ecological conditions. This article provides an overview of an ecosystem-based approach to integrated prawn-fish-rice farming in southwest Bangladesh. The practice of prawn and fish farming in rice fields is a form of integrated aquaculture-agriculture, which provides a wide range of social, economic and environmental benefits. Integrated prawn-fish-rice farming plays an important role in the economy of Bangladesh, earning foreign exchange and increasing food production. However, this unique farming system in coastal Bangladesh is particularly vulnerable to climatechange. We suggest that community-based adaptation strategies must be developed to cope with the challenges. We propose that integrated prawn-fish-rice farming could be relocated from the coastal region to less vulnerable upland areas, but caution that this will require appropriate adaptation strategies and an enabling institutional environment.
Resumo:
Neuropeptide signaling requires the presence of G protein-coupled receptors (GPCRs) at the cell surface. Activated GPCRs interact with beta-arrestins, which mediate receptor desensitization, endocytosis, and mitogenic signaling, and the peptide-receptor-arrestin complex is sequestered into endosomes. Although dissociation of beta-arrestins is required for receptor recycling and resensitization, the critical event that initiates this process is unknown. Here we report that the agonist availability in the endosomes, controlled by the membrane metalloendopeptidase endothelin-converting enzyme 1 (ECE-1), determines stability of the peptide-receptor-arrestin complex and regulates receptor recycling and resensitization. Substance P (SP) binding to the tachykinin neurokinin 1 receptor (NK1R) induced membrane translocation of beta-arrestins followed by trafficking of the SP-NK1R-beta-arrestin complex to early endosomes containing ECE-1a-d. ECE-1 degraded SP in acidified endosomes, disrupting the complex; beta-arrestins returned to the cytosol, and the NK1R, freed from beta-arrestins, recycled and resensitized. An ECE-1 inhibitor, by preventing NK1R recycling in endothelial cells, inhibited resensitization of SP-induced inflammation. This mechanism is a general one because ECE-1 similarly regulated NK3R resensitization. Thus, peptide availability in endosomes, here regulated by ECE-1, determines the stability of the peptide-receptor-arrestin complex. This mechanism regulates receptor recycling, which is necessary for sustained signaling, and it may also control beta-arrestin-dependent mitogenic signaling of endocytosed receptors. We propose that other endosomal enzymes and transporters may similarly control the availability of transmitters in endosomes to regulate trafficking and signaling of GPCRs. Antagonism of these endosomal processes represents a strategy for inhibiting sustained signaling of receptors, and defects may explain the tachyphylaxis of drugs that are receptor agonists.
Resumo:
BACKGROUND & AIMS: The mechanisms underlying abdominal pain perception in irritable bowel syndrome (IBS) are poorly understood. Intestinal mast cell infiltration may perturb nerve function leading to symptom perception. We assessed colonic mast cell infiltration, mediator release, and spatial interactions with mucosal innervation and their correlation with abdominal pain in IBS patients. METHODS: IBS patients were diagnosed according to Rome II criteria and abdominal pain quantified according to a validated questionnaire. Colonic mucosal mast cells were identified immunohistochemically and quantified with a computer-assisted counting method. Mast cell tryptase and histamine release were analyzed immunoenzymatically. Intestinal nerve to mast cell distance was assessed with electron microscopy. RESULTS: Thirty-four out of 44 IBS patients (77%) showed an increased area of mucosa occupied by mast cells as compared with controls (9.2% +/- 2.5% vs. 3.3 +/- 0.8%, respectively; P < 0.001). There was a 150% increase in the number of degranulating mast cells (4.76 +/- 3.18/field vs. 2.42 +/- 2.26/field, respectively; P = 0.026). Mucosal content of tryptase was increased in IBS and mast cells spontaneously released more tryptase (3.22 +/- 3.48 pmol/min/mg vs. 0.87 +/- 0.65 pmol/min/mg, respectively; P = 0.015) and histamine (339.7 +/- 59.0 ng/g vs. 169.3 +/- 130.6 ng/g, respectively; P = 0.015). Mast cells located within 5 microm of nerve fibers were 7.14 +/- 3.87/field vs. 2.27 +/- 1.63/field in IBS vs. controls (P < 0.001). Only mast cells in close proximity to nerves were significantly correlated with severity and frequency of abdominal pain/discomfort (P < 0.001 and P = 0.003, respectively). CONCLUSIONS: Colonic mast cell infiltration and mediator release in proximity to mucosal innervation may contribute to abdominal pain perception in IBS patients.
Resumo:
The communal lands of the Eastern Cape have been regarded as both tools and problems by policy-makers. In particular, communal lands are problematised as environmentally degraded, of suboptimum productivity and constraining economic development. The Eastern Cape Communal Lands Research Project was framed within this policy discourse with the aim of introducing legume-based pasture into ‘abandoned arable lands’. Initial results from community workshops show that the institutional arrangements for these arable lands vary widely and, with them, the capacity to utilise any new technology that may have application to them. Rather than simply draw on social capital, if a participatory research approach is to enhance the agency of the participating communites, it may need to contribute to social capital building and especially to create a dialogical space in which the matters being researched can be discussed meaningfully.
Resumo:
Climate is an important control on biomass burning, but the sensitivity of fire to changes in temperature and moisture balance has not been quantified. We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo- fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote-sensing observations of month-by-month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming.
Resumo:
Climate models consistently predict a strengthened Brewer–Dobson circulation in response to greenhouse gas (GHG)-induced climate change. Although the predicted circulation changes are clearly the result of changes in stratospheric wave drag, the mechanism behind the wave-drag changes remains unclear. Here, simulations from a chemistry–climate model are analyzed to show that the changes in resolved wave drag are largely explainable in terms of a simple and robust dynamical mechanism, namely changes in the location of critical layers within the subtropical lower stratosphere, which are known from observations to control the spatial distribution of Rossby wave breaking. In particular, the strengthening of the upper flanks of the subtropical jets that is robustly expected from GHG-induced tropospheric warming pushes the critical layers (and the associated regions of wave drag) upward, allowing more wave activity to penetrate into the subtropical lower stratosphere. Because the subtropics represent the critical region for wave driving of the Brewer–Dobson circulation, the circulation is thereby strengthened. Transient planetary-scale waves and synoptic-scale waves generated by baroclinic instability are both found to play a crucial role in this process. Changes in stationary planetary wave drag are not so important because they largely occur away from subtropical latitudes.
Resumo:
Requirements for research, practices and policies affecting soil management in relation to global food security are reviewed. Managing soil organic carbon (C) is central because soil organic matter influences numerous soil properties relevant to ecosystem functioning and crop growth. Even small changes in total C content can have disproportionately large impacts on key soil physical properties. Practices to encourage maintenance of soil C are important for ensuring sustainability of all soil functions. Soil is a major store of C within the biosphere – increases or decreases in this large stock can either mitigate or worsen climate change. Deforestation, conversion of grasslands to arable cropping and drainage of wetlands all cause emission of C; policies and international action to minimise these changes are urgently required. Sequestration of C in soil can contribute to climate change mitigation but the real impact of different options is often misunderstood. Some changes in management that are beneficial for soil C, increase emissions of nitrous oxide (a powerful greenhouse gas) thus cancelling the benefit. Research on soil physical processes and their interactions with roots can lead to improved and novel practices to improve crop access to water and nutrients. Increased understanding of root function has implications for selection and breeding of crops to maximise capture of water and nutrients. Roots are also a means of delivering natural plant-produced chemicals into soil with potentially beneficial impacts. These include biocontrol of soil-borne pests and diseases and inhibition of the nitrification process in soil (conversion of ammonium to nitrate) with possible benefits for improved nitrogen use efficiency and decreased nitrous oxide emission. The application of molecular methods to studies of soil organisms, and their interactions with roots, is providing new understanding of soil ecology and the basis for novel practical applications. Policy makers and those concerned with development of management approaches need to keep a watching brief on emerging possibilities from this fast-moving area of science. Nutrient management is a key challenge for global food production: there is an urgent need to increase nutrient availability to crops grown by smallholder farmers in developing countries. Many changes in practices including inter-cropping, inclusion of nitrogen-fixing crops, agroforestry and improved recycling have been clearly demonstrated to be beneficial: facilitating policies and practical strategies are needed to make these widely available, taking account of local economic and social conditions. In the longer term fertilizers will be essential for food security: policies and actions are needed to make these available and affordable to small farmers. In developed regions, and those developing rapidly such as China, strategies and policies to manage more precisely the necessarily large flows of nutrients in ways that minimise environmental damage are essential. A specific issue is to minimise emissions of nitrous oxide whilst ensuring sufficient nitrogen is available for adequate food production. Application of known strategies (through either regulation or education), technological developments, and continued research to improve understanding of basic processes will all play a part. Decreasing soil erosion is essential, both to maintain the soil resource and to minimise downstream damage such as sedimentation of rivers with adverse impacts on fisheries. Practical strategies are well known but often have financial implications for farmers. Examples of systems for paying one group of land users for ecosystem services affecting others exist in several parts of the world and serve as a model.