105 resultados para physically based modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work reported in this paper is motivated by the need to investigate general methods for pattern transformation. A formal definition for pattern transformation is provided and four special cases namely, elementary and geometric transformation based on repositioning all and some agents in the pattern are introduced. The need for a mathematical tool and simulations for visualizing the behavior of a transformation method is highlighted. A mathematical method based on the Moebius transformation is proposed. The transformation method involves discretization of events for planning paths of individual robots in a pattern. Simulations on a particle physics simulator are used to validate the feasibility of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiotics is the study of signs. Application of semiotics in information systems design is based on the notion that information systems are organizations within which agents deploy signs in the form of actions according to a set of norms. An analysis of the relationships among the agents, their actions and the norms would give a better specification of the system. Distributed multimedia systems (DMMS) could be viewed as a system consisted of many dynamic, self-controlled normative agents engaging in complex interaction and processing of multimedia information. This paper reports the work of applying the semiotic approach to the design and modeling of DMMS, with emphasis on using semantic analysis under the semiotic framework. A semantic model of DMMS describing various components and their ontological dependencies is presented, which then serves as a design model and implemented in a semantic database. Benefits of using the semantic database are discussed with reference to various design scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper introduces an efficient construction algorithm for obtaining sparse linear-in-the-weights regression models based on an approach of directly optimizing model generalization capability. This is achieved by utilizing the delete-1 cross validation concept and the associated leave-one-out test error also known as the predicted residual sums of squares (PRESS) statistic, without resorting to any other validation data set for model evaluation in the model construction process. Computational efficiency is ensured using an orthogonal forward regression, but the algorithm incrementally minimizes the PRESS statistic instead of the usual sum of the squared training errors. A local regularization method can naturally be incorporated into the model selection procedure to further enforce model sparsity. The proposed algorithm is fully automatic, and the user is not required to specify any criterion to terminate the model construction procedure. Comparisons with some of the existing state-of-art modeling methods are given, and several examples are included to demonstrate the ability of the proposed algorithm to effectively construct sparse models that generalize well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance benefit when using grid systems comes from different strategies, among which partitioning the applications into parallel tasks is the most important. However, in most cases the enhancement coming from partitioning is smoothed by the effects of synchronization overheads, mainly due to the high variability in the execution times of the different tasks, which, in turn, is accentuated by the large heterogeneity of grid nodes. In this paper we design hierarchical, queuing network performance models able to accurately analyze grid architectures and applications. Thanks to the model results, we introduce a new allocation policy based on a combination between task partitioning and task replication. The models are used to study two real applications and to evaluate the performance benefits obtained with allocation policies based on task replication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many kernel classifier construction algorithms adopt classification accuracy as performance metrics in model evaluation. Moreover, equal weighting is often applied to each data sample in parameter estimation. These modeling practices often become problematic if the data sets are imbalanced. We present a kernel classifier construction algorithm using orthogonal forward selection (OFS) in order to optimize the model generalization for imbalanced two-class data sets. This kernel classifier identification algorithm is based on a new regularized orthogonal weighted least squares (ROWLS) estimator and the model selection criterion of maximal leave-one-out area under curve (LOO-AUC) of the receiver operating characteristics (ROCs). It is shown that, owing to the orthogonalization procedure, the LOO-AUC can be calculated via an analytic formula based on the new regularized orthogonal weighted least squares parameter estimator, without actually splitting the estimation data set. The proposed algorithm can achieve minimal computational expense via a set of forward recursive updating formula in searching model terms with maximal incremental LOO-AUC value. Numerical examples are used to demonstrate the efficacy of the algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strong vertical gradients at the top of the atmospheric boundary layer affect the propagation of electromagnetic waves and can produce radar ducts. A three-dimensional, time-dependent, nonhydrostatic numerical model was used to simulate the propagation environment in the atmosphere over the Persian Gulf when aircraft observations of ducting had been made. A division of the observations into high- and low-wind cases was used as a framework for the simulations. Three sets of simulations were conducted with initial conditions of varying degrees of idealization and were compared with the observations taken in the Ship Antisubmarine Warfare Readiness/Effectiveness Measuring (SHAREM-115) program. The best results occurred with the initialization based on a sounding taken over the coast modified by the inclusion of data on low-level atmospheric conditions over the Gulf waters. The development of moist, cool, stable marine internal boundary layers (MIBL) in air flowing from land over the waters of the Gulf was simulated. The MIBLs were capped by temperature inversions and associated lapses of humidity and refractivity. The low-wind MIBL was shallower and the gradients at its top were sharper than in the high-wind case, in agreement with the observations. Because it is also forced by land–sea contrasts, a sea-breeze circulation frequently occurs in association with the MIBL. The size, location, and internal structure of the sea-breeze circulation were realistically simulated. The gradients of temperature and humidity that bound the MIBL cause perturbations in the refractivity distribution that, in turn, lead to trapping layers and ducts. The existence, location, and surface character of the ducts were well captured. Horizontal variations in duct characteristics due to the sea-breeze circulation were also evident. The simulations successfully distinguished between high- and low-wind occasions, a notable feature of the SHAREM-115 observations. The modeled magnitudes of duct depth and strength, although leaving scope for improvement, were most encouraging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An assessment of aerosol-cloud interactions (ACI) from ground-based remote sensing under coastal stratiform clouds is presented. The assessment utilizes a long-term, high temporal resolution data set from the Atmospheric Radiation Measurement (ARM) Program deployment at Pt. Reyes, California, United States, in 2005 to provide statistically robust measures of ACI and to characterize the variability of the measures based on variability in environmental conditions and observational approaches. The average ACIN (= dlnNd/dlna, the change in cloud drop number concentration with aerosol concentration) is 0.48, within a physically plausible range of 0–1.0. Values vary between 0.18 and 0.69 with dependence on (1) the assumption of constant cloud liquid water path (LWP), (2) the relative value of cloud LWP, (3) methods for retrieving Nd, (4) aerosol size distribution, (5) updraft velocity, and (6) the scale and resolution of observations. The sensitivity of the local, diurnally averaged radiative forcing to this variability in ACIN values, assuming an aerosol perturbation of 500 c-3 relative to a background concentration of 100 cm-3, ranges betwee-4 and -9 W -2. Further characterization of ACI and its variability is required to reduce uncertainties in global radiative forcing estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents several new families of cumulant-based linear equations with respect to the inverse filter coefficients for deconvolution (equalisation) and identification of nonminimum phase systems. Based on noncausal autoregressive (AR) modeling of the output signals and three theorems, these equations are derived for the cases of 2nd-, 3rd and 4th-order cumulants, respectively, and can be expressed as identical or similar forms. The algorithms constructed from these equations are simpler in form, but can offer more accurate results than the existing methods. Since the inverse filter coefficients are simply the solution of a set of linear equations, their uniqueness can normally be guaranteed. Simulations are presented for the cases of skewed series, unskewed continuous series and unskewed discrete series. The results of these simulations confirm the feasibility and efficiency of the algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new numerical modeling of inhaled charge aerosol has been developed based on a modified Weibel's model. Both the velocity profiles (slug and parabolic flows) and the particle distributions (uniform and parabolic distributions) have been considered. Inhaled particles are modeled as a dilute dispersed phase flow in which the particle motion is controlled by fluid force and external forces acting on particles. This numerical study extends the previous numerical studies by considering both space- and image-charge forces. Because of the complex computation of interacting forces due to space-charge effect, the particle-mesh (PM) method is selected to calculate these forces. In the PM technique, the charges of all particles are assigned to the space-charge field mesh, for calculating charge density. The Poisson's equation of the electrostatic potential is then solved, and the electrostatic force acting on individual particle is interpolated. It is assumed that there is no effect of humidity on charged particles. The results show that many significant factors also affect the deposition, such as the volume of particle cloud, the velocity profile and the particle distribution. This study allows a better understanding of electrostatic mechanism of aerosol transport and deposition in human airways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a new nonlinear digital baseband predistorter design is introduced based on direct learning, together with a new Wiener system modeling approach for the high power amplifiers (HPA) based on the B-spline neural network. The contribution is twofold. Firstly, by assuming that the nonlinearity in the HPA is mainly dependent on the input signal amplitude the complex valued nonlinear static function is represented by two real valued B-spline neural networks, one for the amplitude distortion and another for the phase shift. The Gauss-Newton algorithm is applied for the parameter estimation, in which the De Boor recursion is employed to calculate both the B-spline curve and the first order derivatives. Secondly, we derive the predistorter algorithm calculating the inverse of the complex valued nonlinear static function according to B-spline neural network based Wiener models. The inverse of the amplitude and phase shift distortion are then computed and compensated using the identified phase shift model. Numerical examples have been employed to demonstrate the efficacy of the proposed approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying a periodic time-series model from environmental records, without imposing the positivity of the growth rate, does not necessarily respect the time order of the data observations. Consequently, subsequent observations, sampled in the environmental archive, can be inversed on the time axis, resulting in a non-physical signal model. In this paper an optimization technique with linear constraints on the signal model parameters is proposed that prevents time inversions. The activation conditions for this constrained optimization are based upon the physical constraint of the growth rate, namely, that it cannot take values smaller than zero. The actual constraints are defined for polynomials and first-order splines as basis functions for the nonlinear contribution in the distance-time relationship. The method is compared with an existing method that eliminates the time inversions, and its noise sensitivity is tested by means of Monte Carlo simulations. Finally, the usefulness of the method is demonstrated on the measurements of the vessel density, in a mangrove tree, Rhizophora mucronata, and the measurement of Mg/Ca ratios, in a bivalve, Mytilus trossulus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The requirement to forecast volcanic ash concentrations was amplified as a response to the 2010 Eyjafjallajökull eruption when ash safety limits for aviation were introduced in the European area. The ability to provide accurate quantitative forecasts relies to a large extent on the source term which is the emissions of ash as a function of time and height. This study presents source term estimations of the ash emissions from the Eyjafjallajökull eruption derived with an inversion algorithm which constrains modeled ash emissions with satellite observations of volcanic ash. The algorithm is tested with input from two different dispersion models, run on three different meteorological input data sets. The results are robust to which dispersion model and meteorological data are used. Modeled ash concentrations are compared quantitatively to independent measurements from three different research aircraft and one surface measurement station. These comparisons show that the models perform reasonably well in simulating the ash concentrations, and simulations using the source term obtained from the inversion are in overall better agreement with the observations (rank correlation = 0.55, Figure of Merit in Time (FMT) = 25–46%) than simulations using simplified source terms (rank correlation = 0.21, FMT = 20–35%). The vertical structures of the modeled ash clouds mostly agree with lidar observations, and the modeled ash particle size distributions agree reasonably well with observed size distributions. There are occasionally large differences between simulations but the model mean usually outperforms any individual model. The results emphasize the benefits of using an ensemble-based forecast for improved quantification of uncertainties in future ash crises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Following a workshop exercise, two models, an individual-based landscape model (IBLM) and a non-spatial life-history model were used to assess the impact of a fictitious insecticide on populations of skylarks in the UK. The chosen population endpoints were abundance, population growth rate, and the chances of population persistence. Both models used the same life-history descriptors and toxicity profiles as the basis for their parameter inputs. The models differed in that exposure was a pre-determined parameter in the life-history model, but an emergent property of the IBLM, and the IBLM required a landscape structure as an input. The model outputs were qualitatively similar between the two models. Under conditions dominated by winter wheat, both models predicted a population decline that was worsened by the use of the insecticide. Under broader habitat conditions, population declines were only predicted for the scenarios where the insecticide was added. Inputs to the models are very different, with the IBLM requiring a large volume of data in order to achieve the flexibility of being able to integrate a range of environmental and behavioural factors. The life-history model has very few explicit data inputs, but some of these relied on extensive prior modelling needing additional data as described in Roelofs et al.(2005, this volume). Both models have strengths and weaknesses; hence the ideal approach is that of combining the use of both simple and comprehensive modeling tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new sparse shape modeling framework on the Laplace-Beltrami (LB) eigenfunctions. Traditionally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes by forming a Fourier series expansion. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we propose to filter out only the significant eigenfunctions by imposing l1-penalty. The new sparse framework can further avoid additional surface-based smoothing often used in the field. The proposed approach is applied in investigating the influence of age (38-79 years) and gender on amygdala and hippocampus shapes in the normal population. In addition, we show how the emotional response is related to the anatomy of the subcortical structures.