134 resultados para partial least-squares regression
Resumo:
The Fourier-transform spectrum of CH3F from 2800 to 3100 cm−1, obtained by Guelachvili in Orsay at a resolution of about 0.003 cm−1, was analyzed. The effective Hamiltonian used contained all symmetry allowed interactions up to second order in the Amat-Nielsen classification, together with selected third-order terms, amongst the set of nine vibrational basis functions represented by the states ν1(A1), ν4(E), 2ν2(A1), ν2 + ν5(E), 2ν50(A1), and 2ν5±2(E). A number of strong Fermi and Coriolis resonances are involved. The vibrational Hamiltonian matrix was not factorized beyond the requirements of symmetry. A total of 59 molecular parameters were refined in a simultaneous least-squares analysis to over 1500 upper-state energy levels for J ≤ 20 with a standard deviation of 0.013 cm−1. Although the standard deviation remains an order of magnitude greater than the precision of the measurements, this work breaks new ground in the simultaneous analysis of interacting symmetric top vibrational levels, in terms of the number of interacting vibrational states and the number of parameters in the Hamiltonian.
Resumo:
The theory of harmonic force constant refinement calculations is reviewed, and a general-purpose program for force constant and normal coordinate calculations is described. The program, called ASYM20. is available through Quantum Chemistry Program Exchange. It will work on molecules of any symmetry containing up to 20 atoms and will produce results on a series of isotopomers as desired. The vibrational secular equations are solved in either nonredundant valence internal coordinates or symmetry coordinates. As well as calculating the (harmonic) vibrational wavenumbers and normal coordinates, the program will calculate centrifugal distortion constants, Coriolis zeta constants, harmonic contributions to the α′s. root-mean-square amplitudes of vibration, and other quantities related to gas electron-diffraction studies and thermodynamic properties. The program will work in either a predict mode, in which it calculates results from an input force field, or in a refine mode, in which it refines an input force field by least squares to fit observed data on the quantities mentioned above. Predicate values of the force constants may be included in the data set for a least-squares refinement. The program is written in FORTRAN for use on a PC or a mainframe computer. Operation is mainly controlled by steering indices in the input data file, but some interactive control is also implemented.
Resumo:
We report the results of variational calculations of the rovibrational energy levels of HCN for J = 0, 1 and 2, where we reproduce all the ca. 100 observed vibrational states for all observed isotopic species, with energies up to 18000 cm$^{-1}$, to about $\pm $1 cm$^{-1}$, and the corresponding rotational constants to about $\pm $0.001 cm$^{-1}$. We use a hamiltonian expressed in internal coordinates r$_{1}$, r$_{2}$ and $\theta $, using the exact expression for the kinetic energy operator T obtained by direct transformation from the cartesian representation. The potential energy V is expressed as a polynomial expansion in the Morse coordinates y$_{i}$ for the bond stretches and the interbond angle $\theta $. The basis functions are built as products of appropriately scaled Morse functions in the bond-stretches and Legendre or associated Legendre polynomials of cos $\theta $ in the angle bend, and we evaluate matrix elements by Gauss quadrature. The hamiltonian matripx is factorized using the full rovibrational symmetry, and the basis is contracted to an optimized form; the dimensions of the final hamiltonian matrix vary from 240 $\times $ 240 to 1000 $\times $ 1000.We believe that our calculation is converged to better than 1 cm$^{-1}$ at 18 000 cm$^{-1}$. Our potential surface is expressed in terms of 31 parameters, about half of which have been refined by least squares to optimize the fit to the experimental data. The advantages and disadvantages and the future potential of calculations of this type are discussed.
Resumo:
In the crystal structure of the title compound (systematic name: 5H-dibenzo[a,d]cycloheptatriene-5-carboxamide ethanoic acid solvate), C16H13NO center dot C2H4O2, the cytenamide and solvent molecules form a hydrogen-bonded R-2(2)(8) dimer motif, which is further connected to form a centrosymmetric double ring motif arrangement. The cycloheptene ring adopts a boat conformation and the dihedral angle between the least-squares planes through the two aromatic rings is 54.7 (2)degrees.
Resumo:
In this paper new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness, including three algorithms using combined A- or D-optimality or PRESS statistic (Predicted REsidual Sum of Squares) with regularised orthogonal least squares algorithm respectively. A common characteristic of these algorithms is that the inherent computation efficiency associated with the orthogonalisation scheme in orthogonal least squares or regularised orthogonal least squares has been extended such that the new algorithms are computationally efficient. A numerical example is included to demonstrate effectiveness of the algorithms. Copyright (C) 2003 IFAC.
Resumo:
In this paper, we present an on-line estimation algorithm for an uncertain time delay in a continuous system based on the observational input-output data, subject to observational noise. The first order Pade approximation is used to approximate the time delay. At each time step, the algorithm combines the well known Kalman filter algorithm and the recursive instrumental variable least squares (RIVLS) algorithm in cascade form. The instrumental variable least squares algorithm is used in order to achieve the consistency of the delay parameter estimate, since an error-in-the-variable model is involved. An illustrative example is utilized to demonstrate the efficacy of the proposed approach.
Resumo:
We provide a system identification framework for the analysis of THz-transient data. The subspace identification algorithm for both deterministic and stochastic systems is used to model the time-domain responses of structures under broadband excitation. Structures with additional time delays can be modelled within the state-space framework using additional state variables. We compare the numerical stability of the commonly used least-squares ARX models to that of the subspace N4SID algorithm by using examples of fourth-order and eighth-order systems under pulse and chirp excitation conditions. These models correspond to structures having two and four modes simultaneously propagating respectively. We show that chirp excitation combined with the subspace identification algorithm can provide a better identification of the underlying mode dynamics than the ARX model does as the complexity of the system increases. The use of an identified state-space model for mode demixing, upon transformation to a decoupled realization form is illustrated. Applications of state-space models and the N4SID algorithm to THz transient spectroscopy as well as to optical systems are highlighted.
Resumo:
We present a novel topology of the radial basis function (RBF) neural network, referred to as the boundary value constraints (BVC)-RBF, which is able to automatically satisfy a set of BVC. Unlike most existing neural networks whereby the model is identified via learning from observational data only, the proposed BVC-RBF offers a generic framework by taking into account both the deterministic prior knowledge and the stochastic data in an intelligent manner. Like a conventional RBF, the proposed BVC-RBF has a linear-in-the-parameter structure, such that it is advantageous that many of the existing algorithms for linear-in-the-parameters models are directly applicable. The BVC satisfaction properties of the proposed BVC-RBF are discussed. Finally, numerical examples based on the combined D-optimality-based orthogonal least squares algorithm are utilized to illustrate the performance of the proposed BVC-RBF for completeness.
Resumo:
Many kernel classifier construction algorithms adopt classification accuracy as performance metrics in model evaluation. Moreover, equal weighting is often applied to each data sample in parameter estimation. These modeling practices often become problematic if the data sets are imbalanced. We present a kernel classifier construction algorithm using orthogonal forward selection (OFS) in order to optimize the model generalization for imbalanced two-class data sets. This kernel classifier identification algorithm is based on a new regularized orthogonal weighted least squares (ROWLS) estimator and the model selection criterion of maximal leave-one-out area under curve (LOO-AUC) of the receiver operating characteristics (ROCs). It is shown that, owing to the orthogonalization procedure, the LOO-AUC can be calculated via an analytic formula based on the new regularized orthogonal weighted least squares parameter estimator, without actually splitting the estimation data set. The proposed algorithm can achieve minimal computational expense via a set of forward recursive updating formula in searching model terms with maximal incremental LOO-AUC value. Numerical examples are used to demonstrate the efficacy of the algorithm.
Resumo:
New construction algorithms for radial basis function (RBF) network modelling are introduced based on the A-optimality and D-optimality experimental design criteria respectively. We utilize new cost functions, based on experimental design criteria, for model selection that simultaneously optimizes model approximation, parameter variance (A-optimality) or model robustness (D-optimality). The proposed approaches are based on the forward orthogonal least-squares (OLS) algorithm, such that the new A-optimality- and D-optimality-based cost functions are constructed on the basis of an orthogonalization process that gains computational advantages and hence maintains the inherent computational efficiency associated with the conventional forward OLS approach. The proposed approach enhances the very popular forward OLS-algorithm-based RBF model construction method since the resultant RBF models are constructed in a manner that the system dynamics approximation capability, model adequacy and robustness are optimized simultaneously. The numerical examples provided show significant improvement based on the D-optimality design criterion, demonstrating that there is significant room for improvement in modelling via the popular RBF neural network.
Resumo:
A new robust neurofuzzy model construction algorithm has been introduced for the modeling of a priori unknown dynamical systems from observed finite data sets in the form of a set of fuzzy rules. Based on a Takagi-Sugeno (T-S) inference mechanism a one to one mapping between a fuzzy rule base and a model matrix feature subspace is established. This link enables rule based knowledge to be extracted from matrix subspace to enhance model transparency. In order to achieve maximized model robustness and sparsity, a new robust extended Gram-Schmidt (G-S) method has been introduced via two effective and complementary approaches of regularization and D-optimality experimental design. Model rule bases are decomposed into orthogonal subspaces, so as to enhance model transparency with the capability of interpreting the derived rule base energy level. A locally regularized orthogonal least squares algorithm, combined with a D-optimality used for subspace based rule selection, has been extended for fuzzy rule regularization and subspace based information extraction. By using a weighting for the D-optimality cost function, the entire model construction procedure becomes automatic. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
A new identification algorithm is introduced for the Hammerstein model consisting of a nonlinear static function followed by a linear dynamical model. The nonlinear static function is characterised by using the Bezier-Bernstein approximation. The identification method is based on a hybrid scheme including the applications of the inverse of de Casteljau's algorithm, the least squares algorithm and the Gauss-Newton algorithm subject to constraints. The related work and the extension of the proposed algorithm to multi-input multi-output systems are discussed. Numerical examples including systems with some hard nonlinearities are used to illustrate the efficacy of the proposed approach through comparisons with other approaches.
Resumo:
Most active-contour methods are based either on maximizing the image contrast under the contour or on minimizing the sum of squared distances between contour and image 'features'. The Marginalized Likelihood Ratio (MLR) contour model uses a contrast-based measure of goodness-of-fit for the contour and thus falls into the first class. The point of departure from previous models consists in marginalizing this contrast measure over unmodelled shape variations. The MLR model naturally leads to the EM Contour algorithm, in which pose optimization is carried out by iterated least-squares, as in feature-based contour methods. The difference with respect to other feature-based algorithms is that the EM Contour algorithm minimizes squared distances from Bayes least-squares (marginalized) estimates of contour locations, rather than from 'strongest features' in the neighborhood of the contour. Within the framework of the MLR model, alternatives to the EM algorithm can also be derived: one of these alternatives is the empirical-information method. Tracking experiments demonstrate the robustness of pose estimates given by the MLR model, and support the theoretical expectation that the EM Contour algorithm is more robust than either feature-based methods or the empirical-information method. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In recent years nonpolynomial finite element methods have received increasing attention for the efficient solution of wave problems. As with their close cousin the method of particular solutions, high efficiency comes from using solutions to the Helmholtz equation as basis functions. We present and analyze such a method for the scattering of two-dimensional scalar waves from a polygonal domain that achieves exponential convergence purely by increasing the number of basis functions in each element. Key ingredients are the use of basis functions that capture the singularities at corners and the representation of the scattered field towards infinity by a combination of fundamental solutions. The solution is obtained by minimizing a least-squares functional, which we discretize in such a way that a matrix least-squares problem is obtained. We give computable exponential bounds on the rate of convergence of the least-squares functional that are in very good agreement with the observed numerical convergence. Challenging numerical examples, including a nonconvex polygon with several corner singularities, and a cavity domain, are solved to around 10 digits of accuracy with a few seconds of CPU time. The examples are implemented concisely with MPSpack, a MATLAB toolbox for wave computations with nonpolynomial basis functions, developed by the authors. A code example is included.
Resumo:
This paper presents a unique two-stage image restoration framework especially for further application of a novel rectangular poor-pixels detector, which, with properties of miniature size, light weight and low power consumption, has great value in the micro vision system. To meet the demand of fast processing, only a few measured images shifted up to subpixel level are needed to join the fusion operation, fewer than those required in traditional approaches. By maximum likelihood estimation with a least squares method, a preliminary restored image is linearly interpolated. After noise removal via Canny operator based level set evolution, the final high-quality restored image is achieved. Experimental results demonstrate effectiveness of the proposed framework. It is a sensible step towards subsequent image understanding and object identification.