93 resultados para misure sperimentali localizzazione indoor ranging reti wireless
Resumo:
Designing for indoor thermal environmental conditions is one of the key elements in the energy efficient building design process. This paper introduces a development of the Chinese national Evaluation Standard for indoor thermal environments (Evaluation Standard). International standards including the ASHRAE55, ISO7730, DIN EN, and CIBSE Guide-A have been reviewed and referenced for the development of the Evaluation Standard. In addition, over 28,000 subjects participated in the field study from different climate zones in China and over 500 subjects have been involved in laboratory studies. The research findings reveal that there is a need to update the Chinese thermal comfort standard based on local climates and people's habitats. This paper introduces in detail the requirements for the thermal environment for heated and cooled buildings and free-running buildings in China.
Resumo:
We consider indoors communications networks using modulated LEDs to transmit the information packets. A generic indoor channel equalization formulation is proposed assuming the existence of both line of sight and diffuse emitters. The proposed approach is of relevance to emergent indoors distributed sensing modalities for which various lighting based network communications protocols are considered.
Resumo:
Wireless video sensor networks have been a hot topic in recent years; the monitoring capability is the central feature of the services offered by a wireless video sensor network can be classified into three major categories: monitoring, alerting, and information on-demand. These features have been applied to a large number of applications related to the environment (agriculture, water, forest and fire detection), military, buildings, health (elderly people and home monitoring), disaster relief, area and industrial monitoring. Security applications oriented toward critical infrastructures and disaster relief are very important applications that many countries have identified as critical in the near future. This paper aims to design a cross layer based protocol to provide the required quality of services for security related applications using wireless video sensor networks. Energy saving, delay and reliability for the delivered data are crucial in the proposed application. Simulation results show that the proposed cross layer based protocol offers a good performance in term of providing the required quality of services for the proposed application.
Resumo:
This letter presents an accurate delay analysis in prioritised wireless sensor networks (WSN). The analysis is an enhancement of the existing analysis proposed by Choobkar and Dilmaghani, which is only applicable to the case where the lower priority nodes always have packets to send in the empty slots of the higher priority node. The proposed analysis is applicable for any pattern of packet arrival, which includes the general case where the lower priority nodes may or may not have packets to send in the empty slots of the higher priority nodes. Evaluation of both analyses showed that the proposed delay analysis has better accuracy over the full range of loads and provides an excellent match to simulation results.
Resumo:
Environment monitoring applications using Wireless Sensor Networks (WSNs) have had a lot of attention in recent years. In much of this research tasks like sensor data processing, environment states and events decision making and emergency message sending are done by a remote server. A proposed cross layer protocol for two different applications where, reliability for delivered data, delay and life time of the network need to be considered, has been simulated and the results are presented in this paper. A WSN designed for the proposed applications needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from source nodes to the sink. A cross layer based on the design given in [1] has been extended and simulated for the proposed applications, with new features, such as routes discovery algorithms added. Simulation results show that the proposed cross layer based protocol can conserve energy for nodes and provide the required performance such as life time of the network, delay and reliability.
Resumo:
Using Wireless Sensor Networks (WSNs) in healthcare systems has had a lot of attention in recent years. In much of this research tasks like sensor data processing, health states decision making and emergency message sending are done by a remote server. Many patients with lots of sensor data consume a great deal of communication resources, bring a burden to the remote server and delay the decision time and notification time. A healthcare application for elderly people using WSN has been simulated in this paper. A WSN designed for the proposed healthcare application needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from the patients to the medical centre. Based on these requirements, A cross layer based on the modified versions of APTEEN and GinMAC has been designed and implemented, with new features, such as a mobility module and routes discovery algorithms have been added. Simulation results show that the proposed cross layer based protocol can conserve energy for nodes and provide the required performance such as life time of the network, delay and reliability for the proposed healthcare application.
Resumo:
Using Wireless Sensor Networks (WSNs) in healthcare systems has had a lot of attention in recent years. In much of this research tasks like sensor data processing, health states decision making and emergency message sending are done by a remote server. Many patients with lots of sensor data consume a great deal of communication resources, bring a burden to the remote server and delay the decision time and notification time. A healthcare application for elderly people using WSN has been simulated in this paper. A WSN designed for the proposed healthcare application needs efficient Medium Access Control (MAC) and routing protocols to provide a guarantee for the reliability of the data delivered from the patients to the medical centre. Based on these requirements, the GinMAC protocol including a mobility module has been chosen, to provide the required performance such as reliability for data delivery and energy saving. Simulation results show that this modification to GinMAC can offer the required performance for the proposed healthcare application.
Resumo:
Using Wireless Sensor Networks (WSNs) in healthcare systems has had a lot of attention in recent years. In much of this research tasks like sensor data processing, health states decision making and emergency message sending are done by a remote server. Many patients with lots of sensor data consume a great deal of communication resources, bring a burden to the remote server and delay the decision time and notification time. A healthcare application for elderly people using WSN has been simulated in this paper. A WSN designed for the proposed healthcare application needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from the patients to the medical centre. Based on these requirements, the GinMAC protocol including a mobility module has been chosen, to provide the required performance such as reliability for data delivery and energy saving. Simulation results show that this modification to GinMAC can offer the required performance for the proposed healthcare application.
Resumo:
Wireless Senor Networks(WSNs) detect events using one or more sensors, then collect data from detected events using these sensors. This data is aggregated and forwarded to a base station(sink) through wireless communication to provide the required operations. Different kinds of MAC and routing protocols need to be designed for WSN in order to guarantee data delivery from the source nodes to the sink. Some of the proposed MAC protocols for WSN with their techniques, advantages and disadvantages in the terms of their suitability for real time applications are discussed in this paper. We have concluded that most of these protocols can not be applied to real time applications without improvement
Resumo:
Health monitoring technologies such as Body Area Network (BAN) systems has gathered a lot of attention during the past few years. Largely encouraged by the rapid increase in the cost of healthcare services and driven by the latest technological advances in Micro-Electro-Mechanical Systems (MEMS) and wireless communications. BAN technology comprises of a network of body worn or implanted sensors that continuously capture and measure the vital parameters such as heart rate, blood pressure, glucose levels and movement. The collected data must be transferred to a local base station in order to be further processed. Thus, wireless connectivity plays a vital role in such systems. However, wireless connectivity comes at a cost of increased power usage, mainly due to the high energy consumption during data transmission. Unfortunately, battery-operated devices are unable to operate for ultra-long duration of time and are expected to be recharged or replaced once they run out of energy. This is not a simple task especially in the case of implanted devices such as pacemakers. Therefore, prolonging the network lifetime in BAN systems is one of the greatest challenges. In order to achieve this goal, BAN systems take advantage of low-power in-body and on-body/off-body wireless communication technologies. This paper compares some of the existing and emerging low-power communication protocols that can potentially be employed to support the rapid development and deployment of BAN systems.
Resumo:
The efficiency of a Wireless Power Transfer (WPT) system is greatly dependent on both the geometry and operating frequency of the transmitting and receiving structures. By using Coupled Mode Theory (CMT), the figure of merit is calculated for resonantly-coupled loop and dipole systems. An in-depth analysis of the figure of merit is performed with respect to the key geometric parameters of the loops and dipoles, along with the resonant frequency, in order to identify the key relationships leading to high-efficiency WPT. For systems consisting of two identical single-turn loops, it is shown that the choice of both the loop radius and resonant frequency are essential in achieving high-efficiency WPT. For the dipole geometries studied, it is shown that the choice of length is largely irrelevant and that as a result of their capacitive nature, low-MHz frequency dipoles are able to produce significantly higher figures of merit than those of the loops considered. The results of the figure of merit analysis are used to propose and subsequently compare two mid-range loop and dipole WPT systems of equal size and operating frequency, where it is shown that the dipole system is able to achieve higher efficiencies than the loop system of the distance range examined.
Resumo:
Buildings consume a large amount of energy, in both their use and production. Retrofitting aims to achieve a reduction in this energy consumption. However, there are concerns that retrofitting can cause negative impacts on the internal environment including poor thermal comfort and health issues. This research investigates the impact of retrofitting the façade of existing traditional buildings and the resulting impact on the indoor environment and occupant thermal comfort. A Case building located at the University of Reading has been monitored experimentally and modelled using IES software with monitored values as input conditions for the model. The proposed façade related retrofit options have been simulated and provide information on their effect on the indoor environment. The findings show a positive impact on the internal environment. The data shows a 16.2% improvement in thermal comfort after retrofit is simulated. This also achieved a 21.6% reduction in energy consumption from the existing building.
Resumo:
Demand for good indoor air quality is increasing as people recorgnise the risks to their health and productivity from indoor pollutants. There is a tendency to reduce ventilation rates to ensure energy conservation in buildings; in this instance schools. However, evidence reviewed shows that this can be detrimental to health and wellbeing in schools because of the learner density within a small area (1.8 - 2.4m2/person); eventually indicating that carbon dioxide (CO2) levels can rise to very high levels in classroom occupancy periods. A preliminary study to investigate the impact of indoor environmental parameters has been performed in a secondary school classroom in Pretoria, South Africa. Factors monitored include temperature, relative humidity, lighting, air velocities and CO2 concentrations. From the results low air velocities are recorded (i.e. 0.1-0.3m/s) impacting on the retention of CO2 build-up in the classroom. Results presented in this paper are the initial findings of ongoing research.