133 resultados para mean squared residue


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models often underestimate blocking in the Atlantic and Pacific basins and this can lead to errors in both weather and climate predictions. Horizontal resolution is often cited as the main culprit for blocking errors due to poorly resolved small-scale variability, the upscale effects of which help to maintain blocks. Although these processes are important for blocking, the authors show that much of the blocking error diagnosed using common methods of analysis and current climate models is directly attributable to the climatological bias of the model. This explains a large proportion of diagnosed blocking error in models used in the recent Intergovernmental Panel for Climate Change report. Furthermore, greatly improved statistics are obtained by diagnosing blocking using climate model data corrected to account for mean model biases. To the extent that mean biases may be corrected in low-resolution models, this suggests that such models may be able to generate greatly improved levels of atmospheric blocking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synoptic-scale air flow variability over the United Kingdom is measured on a daily time scale by following previous work to define 3 indices: geostrophic flow strength, vorticity and direction. Comparing the observed distribution of air flow index values with those determined from a simulation with the Hadley Centre’s global climate model (HadCM2) identifies some minor systematic biases in the model’s synoptic circulation but demonstrates that the major features are well simulated. The relationship between temperature and precipitation from parts of the United Kingdom and these air flow indices (either singly or in pairs) is found to be very similar in both the observations and model output; indeed the simulated and observed precipitation relationships are found to be almost interchangeable in a quantitative sense. These encouraging results imply that some reliability can be assumed for single grid-box and regional output from this climate model; this applies only to those grid boxes evaluated here (which do not have high or complex orography), only to the portion of variability that is controlled by synoptic air flow variations, and only to those surface variables considered here (temperature and precipitation).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses how numerical gradient estimation methods may be used in order to reduce the computational demands on a class of multidimensional clustering algorithms. The study is motivated by the recognition that several current point-density based cluster identification algorithms could benefit from a reduction of computational demand if approximate a-priori estimates of the cluster centres present in a given data set could be supplied as starting conditions for these algorithms. In this particular presentation, the algorithm shown to benefit from the technique is the Mean-Tracking (M-T) cluster algorithm, but the results obtained from the gradient estimation approach may also be applied to other clustering algorithms and their related disciplines.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accurate prediction of the biochemical function of a protein is becoming increasingly important, given the unprecedented growth of both structural and sequence databanks. Consequently, computational methods are required to analyse such data in an automated manner to ensure genomes are annotated accurately. Protein structure prediction methods, for example, are capable of generating approximate structural models on a genome-wide scale. However, the detection of functionally important regions in such crude models, as well as structural genomics targets, remains an extremely important problem. The method described in the current study, MetSite, represents a fully automatic approach for the detection of metal-binding residue clusters applicable to protein models of moderate quality. The method involves using sequence profile information in combination with approximate structural data. Several neural network classifiers are shown to be able to distinguish metal sites from non-sites with a mean accuracy of 94.5%. The method was demonstrated to identify metal-binding sites correctly in LiveBench targets where no obvious metal-binding sequence motifs were detectable using InterPro. Accurate detection of metal sites was shown to be feasible for low-resolution predicted structures generated using mGenTHREADER where no side-chain information was available. High-scoring predictions were observed for a recently solved hypothetical protein from Haemophilus influenzae, indicating a putative metal-binding site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estimation of prediction quality is important because without quality measures, it is difficult to determine the usefulness of a prediction. Currently, methods for ligand binding site residue predictions are assessed in the function prediction category of the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment, utilizing the Matthews Correlation Coefficient (MCC) and Binding-site Distance Test (BDT) metrics. However, the assessment of ligand binding site predictions using such metrics requires the availability of solved structures with bound ligands. Thus, we have developed a ligand binding site quality assessment tool, FunFOLDQA, which utilizes protein feature analysis to predict ligand binding site quality prior to the experimental solution of the protein structures and their ligand interactions. The FunFOLDQA feature scores were combined using: simple linear combinations, multiple linear regression and a neural network. The neural network produced significantly better results for correlations to both the MCC and BDT scores, according to Kendall’s τ, Spearman’s ρ and Pearson’s r correlation coefficients, when tested on both the CASP8 and CASP9 datasets. The neural network also produced the largest Area Under the Curve score (AUC) when Receiver Operator Characteristic (ROC) analysis was undertaken for the CASP8 dataset. Furthermore, the FunFOLDQA algorithm incorporating the neural network, is shown to add value to FunFOLD, when both methods are employed in combination. This results in a statistically significant improvement over all of the best server methods, the FunFOLD method (6.43%), and one of the top manual groups (FN293) tested on the CASP8 dataset. The FunFOLDQA method was also found to be competitive with the top server methods when tested on the CASP9 dataset. To the best of our knowledge, FunFOLDQA is the first attempt to develop a method that can be used to assess ligand binding site prediction quality, in the absence of experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metrics are often used to compare the climate impacts of emissions from various sources, sectors or nations. These are usually based on global-mean input, and so there is the potential that important information on smaller scales is lost. Assuming a non-linear dependence of the climate impact on local surface temperature change, we explore the loss of information about regional variability that results from using global-mean input in the specific case of heterogeneous changes in ozone, methane and aerosol concentrations resulting from emissions from road traffic, aviation and shipping. Results from equilibrium simulations with two general circulation models are used. An alternative metric for capturing the regional climate impacts is investigated. We find that the application of a metric that is first calculated locally and then averaged globally captures a more complete and informative signal of climate impact than one that uses global-mean input. The loss of information when heterogeneity is ignored is largest in the case of aviation. Further investigation of the spatial distribution of temperature change indicates that although the pattern of temperature response does not closely match the pattern of the forcing, the forcing pattern still influences the response pattern on a hemispheric scale. When the short-lived transport forcing is superimposed on present-day anthropogenic CO2 forcing, the heterogeneity in the temperature response to CO2 dominates. This suggests that the importance of including regional climate impacts in global metrics depends on whether small sectors are considered in isolation or as part of the overall climate change.