119 resultados para linear parameter varying system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of “distance to instability” of a system matrix is generalized to system pencils which arise in descriptor (semistate) systems. Difficulties arise in the case of singular systems, because the pencil can be made unstable by an infinitesimal perturbation. It is necessary to measure the distance subject to restricted, or structured, perturbations. In this paper a suitable measure for the stability radius of a generalized state-space system is defined, and a computable expression for the distance to instability is derived for regular pencils of index less than or equal to one. For systems which are strongly controllable it is shown that this measure is related to the sensitivity of the poles of the system over all feedback matrices assigning the poles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data assimilation is predominantly used for state estimation; combining observational data with model predictions to produce an updated model state that most accurately approximates the true system state whilst keeping the model parameters fixed. This updated model state is then used to initiate the next model forecast. Even with perfect initial data, inaccurate model parameters will lead to the growth of prediction errors. To generate reliable forecasts we need good estimates of both the current system state and the model parameters. This paper presents research into data assimilation methods for morphodynamic model state and parameter estimation. First, we focus on state estimation and describe implementation of a three dimensional variational(3D-Var) data assimilation scheme in a simple 2D morphodynamic model of Morecambe Bay, UK. The assimilation of observations of bathymetry derived from SAR satellite imagery and a ship-borne survey is shown to significantly improve the predictive capability of the model over a 2 year run. Here, the model parameters are set by manual calibration; this is laborious and is found to produce different parameter values depending on the type and coverage of the validation dataset. The second part of this paper considers the problem of model parameter estimation in more detail. We explain how, by employing the technique of state augmentation, it is possible to use data assimilation to estimate uncertain model parameters concurrently with the model state. This approach removes inefficiencies associated with manual calibration and enables more effective use of observational data. We outline the development of a novel hybrid sequential 3D-Var data assimilation algorithm for joint state-parameter estimation and demonstrate its efficacy using an idealised 1D sediment transport model. The results of this study are extremely positive and suggest that there is great potential for the use of data assimilation-based state-parameter estimation in coastal morphodynamic modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers two-stage iterative processes for solving the linear system $Af = b$. The outer iteration is defined by $Mf^{k + 1} = Nf^k + b$, where $M$ is a nonsingular matrix such that $M - N = A$. At each stage $f^{k + 1} $ is computed approximately using an inner iteration process to solve $Mv = Nf^k + b$ for $v$. At the $k$th outer iteration, $p_k $ inner iterations are performed. It is shown that this procedure converges if $p_k \geqq P$ for some $P$ provided that the inner iteration is convergent and that the outer process would converge if $f^{k + 1} $ were determined exactly at every step. Convergence is also proved under more specialized conditions, and for the procedure where $p_k = p$ for all $k$, an estimate for $p$ is obtained which optimizes the convergence rate. Examples are given for systems arising from the numerical solution of elliptic partial differential equations and numerical results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled � ight. The construction of a robust closed-loop control that extends the stable and decoupled � ight envelope as far as possible is pursued. For the study of these systems, nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and to investigate control effects on dynamic behavior. Linear feedback control designs constructed by eigenstructure assignment methods at a � xed � ight condition are investigated for a simple nonlinear aircraft model. Bifurcation analysis, in conjunction with linear control design methods, is shown to aid control law design for the nonlinear system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled flight. The aim of this work is to construct a robust closed-loop control that optimally extends the stable and decoupled flight envelope. For the study of these systems nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and investigate control effects on dynamic behavior. In this work linear feedback control designs calculated by eigenstructure assignment methods are investigated for a simple aircraft model at a fixed flight condition. Bifurcation analysis in conjunction with linear control design methods is shown to aid control law design for the nonlinear system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article a simple and effective algorithm is introduced for the system identification of the Wiener system using observational input/output data. The nonlinear static function in the Wiener system is modelled using a B-spline neural network. The Gauss–Newton algorithm is combined with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialisation scheme. Numerical examples are utilised to demonstrate the efficacy of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a complex-valued (CV) B-spline neural network approach for efficient identification and inversion of CV Wiener systems. The CV nonlinear static function in the Wiener system is represented using the tensor product of two univariate B-spline neural networks. With the aid of a least squares parameter initialisation, the Gauss-Newton algorithm effectively estimates the model parameters that include the CV linear dynamic model coefficients and B-spline neural network weights. The identification algorithm naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. An accurate inverse of the CV Wiener system is then obtained, in which the inverse of the CV nonlinear static function of the Wiener system is calculated efficiently using the Gaussian-Newton algorithm based on the estimated B-spline neural network model, with the aid of the De Boor recursions. The effectiveness of our approach for identification and inversion of CV Wiener systems is demonstrated using the application of digital predistorter design for high power amplifiers with memory

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose an efficient two-level model identification method for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularization parameters in the elastic net are optimized using a particle swarm optimization (PSO) algorithm at the upper level by minimizing the leave one out (LOO) mean square error (LOOMSE). Illustrative examples are included to demonstrate the effectiveness of the new approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was, within a sensitivity analysis framework, to determine if additional model complexity gives a better capability to model the hydrology and nitrogen dynamics of a small Mediterranean forested catchment or if the additional parameters cause over-fitting. Three nitrogen-models of varying hydrological complexity were considered. For each model, general sensitivity analysis (GSA) and Generalized Likelihood Uncertainty Estimation (GLUE) were applied, each based on 100,000 Monte Carlo simulations. The results highlighted the most complex structure as the most appropriate, providing the best representation of the non-linear patterns observed in the flow and streamwater nitrate concentrations between 1999 and 2002. Its 5% and 95% GLUE bounds, obtained considering a multi-objective approach, provide the narrowest band for streamwater nitrogen, which suggests increased model robustness, though all models exhibit periods of inconsistent good and poor fits between simulated outcomes and observed data. The results confirm the importance of the riparian zone in controlling the short-term (daily) streamwater nitrogen dynamics in this catchment but not the overall flux of nitrogen from the catchment. It was also shown that as the complexity of a hydrological model increases over-parameterisation occurs, but the converse is true for a water quality model where additional process representation leads to additional acceptable model simulations. Water quality data help constrain the hydrological representation in process-based models. Increased complexity was justifiable for modelling river-system hydrochemistry. Increased complexity was justifiable for modelling river-system hydrochemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current methods for estimating vegetation parameters are generally sub-optimal in the way they exploit information and do not generally consider uncertainties. We look forward to a future where operational dataassimilation schemes improve estimates by tracking land surface processes and exploiting multiple types of observations. Dataassimilation schemes seek to combine observations and models in a statistically optimal way taking into account uncertainty in both, but have not yet been much exploited in this area. The EO-LDAS scheme and prototype, developed under ESA funding, is designed to exploit the anticipated wealth of data that will be available under GMES missions, such as the Sentinel family of satellites, to provide improved mapping of land surface biophysical parameters. This paper describes the EO-LDAS implementation, and explores some of its core functionality. EO-LDAS is a weak constraint variational dataassimilationsystem. The prototype provides a mechanism for constraint based on a prior estimate of the state vector, a linear dynamic model, and EarthObservationdata (top-of-canopy reflectance here). The observation operator is a non-linear optical radiative transfer model for a vegetation canopy with a soil lower boundary, operating over the range 400 to 2500 nm. Adjoint codes for all model and operator components are provided in the prototype by automatic differentiation of the computer codes. In this paper, EO-LDAS is applied to the problem of daily estimation of six of the parameters controlling the radiative transfer operator over the course of a year (> 2000 state vector elements). Zero and first order process model constraints are implemented and explored as the dynamic model. The assimilation estimates all state vector elements simultaneously. This is performed in the context of a typical Sentinel-2 MSI operating scenario, using synthetic MSI observations simulated with the observation operator, with uncertainties typical of those achieved by optical sensors supposed for the data. The experiments consider a baseline state vector estimation case where dynamic constraints are applied, and assess the impact of dynamic constraints on the a posteriori uncertainties. The results demonstrate that reductions in uncertainty by a factor of up to two might be obtained by applying the sorts of dynamic constraints used here. The hyperparameter (dynamic model uncertainty) required to control the assimilation are estimated by a cross-validation exercise. The result of the assimilation is seen to be robust to missing observations with quite large data gaps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear models of bidirectional reflectance distribution are useful tools for understanding the angular variability of surface reflectance as observed by medium-resolution sensors such as the Moderate Resolution Imaging Spectrometer. These models are operationally used to normalize data to common view and illumination geometries and to calculate integral quantities such as albedo. Currently, to compensate for noise in observed reflectance, these models are inverted against data collected during some temporal window for which the model parameters are assumed to be constant. Despite this, the retrieved parameters are often noisy for regions where sufficient observations are not available. This paper demonstrates the use of Lagrangian multipliers to allow arbitrarily large windows and, at the same time, produce individual parameter sets for each day even for regions where only sparse observations are available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mechanism for amplification of mountain waves, and their associated drag, by parametric resonance is investigated using linear theory and numerical simulations. This mechanism, which is active when the Scorer parameter oscillates with height, was recently classified by previous authors as intrinsically nonlinear. Here it is shown that, if friction is included in the simplest possible form as a Rayleigh damping, and the solution to the Taylor-Goldstein equation is expanded in a power series of the amplitude of the Scorer parameter oscillation, linear theory can replicate the resonant amplification produced by numerical simulations with some accuracy. The drag is significantly altered by resonance in the vicinity of n/l_0 = 2, where l_0 is the unperturbed value of the Scorer parameter and n is the wave number of its oscillation. Depending on the phase of this oscillation, the drag may be substantially amplified or attenuated relative to its non-resonant value, displaying either single maxima or minima, or double extrema near n/l_0 = 2. Both non-hydrostatic effects and friction tend to reduce the magnitude of the drag extrema. However, in exactly inviscid conditions, the single drag maximum and minimum are suppressed. As in the atmosphere friction is often small but non-zero outside the boundary layer, modelling of the drag amplification mechanism addressed here should be quite sensitive to the type of turbulence closure employed in numerical models, or to computational dissipation in nominally inviscid simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical model of orographic gravity wave drag due to sheared flow past elliptical mountains is developed. The model extends the domain of applicability of the well-known Phillips model to wind profiles that vary relatively slowly in the vertical, so that they may be treated using a WKB approximation. The model illustrates how linear processes associated with wind profile shear and curvature affect the drag force exerted by the airflow on mountains, and how it is crucial to extend the WKB approximation to second order in the small perturbation parameter for these effects to be taken into account. For the simplest wind profiles, the normalized drag depends only on the Richardson number, Ri, of the flow at the surface and on the aspect ratio, γ, of the mountain. For a linear wind profile, the drag decreases as Ri decreases, and this variation is faster when the wind is across the mountain than when it is along the mountain. For a wind that rotates with height maintaining its magnitude, the drag generally increases as Ri decreases, by an amount depending on γ and on the incidence angle. The results from WKB theory are compared with exact linear results and also with results from a non-hydrostatic nonlinear numerical model, showing in general encouraging agreement, down to values of Ri of order one.