101 resultados para isopentyl acetate
Resumo:
A semiochemical based push-pull strategy for control of oilseed rape pests is being developed at Rothamsted Research. This strategy uses insect and plant derived semiochemicals to manipulate pests and their natural enemies. An important element within this strategy is an understanding of the importance of non-host plant cues for pest insects and how such signals could be used to manipulate their behaviour. Previous studies using a range of non-host plants have shown that, for the pollen beetle Meligethes aeneus (Coleoptera: Nitidulidae), the essential oil of lavender, Lavandula angustifolia (Lamiaceae), was the most repellent. The aim of this study was to identify the active components in L. angustifolia oil, and to investigate the behaviour of M. aeneus to these chemicals, to establish the most effective use of repellent stimuli to disrupt colonisation of oilseed rape crops. Coupled gas chromatography-electroantennography (GC-EAG) and gas chromatography-mass spectrometry (GC-MS) resulted in the identification of seven active compounds which were tested for behavioural activity using a 4-way olfactometer. Repellent responses were observed with (±)-linalool and (±)-linalyl acetate. The use of these chemicals within a push-pull pest control strategy is discussed.
Resumo:
This study examined the expression of the platelet collagen receptor glycoprotein VI (GPVI) in megakaryocyte cell lines and primary megakaryocytes by reverse transcriptase-polymerase chain reaction and by flow cytometry and ligand blotting using the snake venom toxin convulxin. Expression of GPVI is increased in the megakaryoblastic cell lines HEL and CMK on differentiation with the phorbol ester phorbol 12-myristate 13-acetate (PMA), along with the Fc receptor gamma-chain (FcR gamma-chain). The increase in GPVI expression is associated with marked potentiation of tyrosine phosphorylation and Ca(++) elevation in response to convulxin. Syk, linker for activated T cells, and phospholipase C gamma 2 (PLC gamma 2) are among the proteins tyrosine phosphorylated on convulxin stimulation in PMA-differentiated HEL cells. Studies on primary murine megakaryocytes grown in vitro confirmed that GPVI is up-regulated in parallel with functional activation, assessed by measurement of [Ca(++)](i), during differentiation. The results demonstrate that expression of GPVI is up-regulated along with the FcR gamma-chain during differentiation of megakaryocytes. (Blood. 2000;96:2740-2745)
Resumo:
The fermentation selectivity of a commercial source of α-gluco-oligosaccharides (BioEcolians; Solabia) was investigated in vitro. Fermentation by faecal bacteria from four lean and four obese healthy adults was determined in anaerobic, pH-controlled faecal batch cultures. Inulin was used as a positive prebiotic control. Samples were obtained at 0, 10, 24 and 36 h for bacterial enumeration by fluorescent in situ hybridisation and SCFA analyses. Gas production during fermentation was investigated in non-pH-controlled batch cultures. α-Gluco-oligosaccharides significantly increased the Bifidobacterium sp. population compared with the control. Other bacterial groups enumerated were unaffected with the exception of an increase in the Bacteroides–Prevotella group and a decrease in Faecalibacterium prausnitzii on both α-gluco-oligosaccharides and inulin compared with baseline. An increase in acetate and propionate was seen on both substrates. The fermentation of α-gluco-oligosaccharides produced less total gas at a more gradual rate of production than inulin. Generally, substrates fermented with the obese microbiota produced similar results to the lean fermentation regarding bacteriology and metabolic activity. No significant difference at baseline (0 h) was detected between the lean and obese individuals in any of the faecal bacterial groups studied.
Resumo:
A thermal transition is observed in the peptide amphiphile C16-KTTKS (TFA salt) from nanotapes at 20 degrees C to micelles at higher temperature (the transition temperature depending on concentration). The formation of extended nanotapes by the acetate salt of this peptide amphiphile, which incorporates a pentapeptide from type I procollagen, has been studied previously [V. Castelletto et al., Chem. Commun., 2010, 46, 9185]. Here, proton NMR and SAXS provide evidence for the TFA salt spherical micelles at high temperature. The phase behavior, with a Krafft temperature separating insoluble aggregates (extended nanotapes) at low temperature from the high temperature micellar phase resembles that for conventional surfactants, however this has not previously been reported for peptide amphiphiles.
Resumo:
Probiotics are currently being investigated for prevention of infections caused by enteric pathogens. The aim of this in vitro study was to evaluate the influence of three single probiotics: Lactobacillus casei NCIMB 30185 (PXN 37), Lactobacillus acidophilus NCIMB 30184 (PXN 35), Bifidobacterium breve NCIMB 30180 (PXN 25) and a probiotic mixture containing the above strains plus twelve other strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus genera on the survival of Salmonella Typhimurium and Clostridium difficile using pH-controlled anaerobic batch cultures containing mixed fecal bacteria. Changes in relevant bacterial groups and effects of probiotic addition on survival of the two pathogens were assessed over 24 h. Quantitative analysis of bacterial populations revealed that there was a significant increase in lactobacilli and/or bifidobacteria numbers, depending on probiotic addition, compared with the control (no added probiotic). There was also a significant reduction in S. Typhimurium and C. difficile numbers in the presence of certain probiotics compared with controls. Of the probiotic treatments, two single strains namely L. casei NCIMB 30185 (PXN 37), and B. breve NCIMB 30180 (PXN 25) were the most potent in reducing the numbers of S. Typhimurium and C. difficile. In addition, the supplementation with probiotics into the systems influenced some fermentations parameters. Acetate was found in the largest concentrations in all vessels and lactate and formate were generally detected in higher amounts in vessels with probiotic addition compared to controls.
Resumo:
Wheat dextrin soluble fibre may have metabolic and health benefits, potentially acting via mechanisms governed by the selective modulation of the human gut microbiota. Our aim was to examine the impact of wheat dextrin on the composition and metabolic activity of the gut microbiota. We used a validated in vitro three-stage continuous culture human colonic model (gut model) system comprised of vessels simulating anatomical regions of the human colon. To mimic human ingestion, 7 g of wheat dextrin (NUTRIOSE® FB06) was administered to three gut models, twice daily at 10.00 and 15.00, for a total of 18 days. Samples were collected and analysed for microbial composition and organic acid concentrations by 16S rRNA-based fluorescence in situ hybridisation and gas chromatography approaches, respectively. Wheat dextrin mediated a significant increase in total bacteria in vessels simulating the transverse and distal colon, and a significant increase in key butyrate-producing bacteria Clostridium cluster XIVa and Roseburia genus in all vessels of the gut model. The production of principal short-chain fatty acids, acetate, propionate and butyrate, which have been purported to have protective, trophic and metabolic host benefits, were increased. Specifically, wheat dextrin fermentation had a significant butyrogenic effect in all vessels of the gut model and significantly increased production of acetate (vessels 2 and 3) and propionate (vessel 3), simulating the transverse and distal regions of the human colon, respectively. In conclusion, wheat dextrin NUTRIOSE® FB06 is selectively fermented in vitro by Clostridium cluster XIVa and Roseburia genus and beneficially alters the metabolic profile of the human gut microbiota.
Resumo:
Certain milk factors can promote the growth of a host-friendly gastrointestinal microflora. This may explain why breast-fed infants experience fewer intestinal infections than their formula-fed counterparts. The effect of formula supplementation with two such factors was investigated in this study. Infant faecal specimens were used to ferment formulas supplemented with glycomacropeptide and α-lactalbumin in a two-stage compound continuous culture model. Bacteriology was determined by fluorescence in situ hybridisation. Vessels that contained breast milk as well as α-lactalbumin and glycomacropeptide had stable counts of bifidobacteria while lactobacilli increased significantly only in vessels with breast milk. Bacteroides, clostridia and Escherichia coli decreased significantly in all runs. Acetate was the principal acid found along with high amounts of propionate and lactate. Supplementation of infant formulas with appropriate milk proteins may be useful in simulating the beneficial bacteriological effects of breast milk.
Resumo:
Modeling aging and age-related pathologies presents a substantial analytical challenge given the complexity of gene−environment influences and interactions operating on an individual. A top-down systems approach is used to model the effects of lifelong caloric restriction, which is known to extend life span in several animal models. The metabolic phenotypes of caloric-restricted (CR; n = 24) and pair-housed control-fed (CF; n = 24) Labrador Retriever dogs were investigated by use of orthogonal projection to latent structures discriminant analysis (OPLS-DA) to model both generic and age-specific responses to caloric restriction from the 1H NMR blood serum profiles of young and older dogs. Three aging metabolic phenotypes were resolved: (i) an aging metabolic phenotype independent of diet, characterized by high levels of glutamine, creatinine, methylamine, dimethylamine, trimethylamine N-oxide, and glycerophosphocholine and decreasing levels of glycine, aspartate, creatine and citrate indicative of metabolic changes associated largely with muscle mass; (ii) an aging metabolic phenotype specific to CR dogs that consisted of relatively lower levels of glucose, acetate, choline, and tyrosine and relatively higher serum levels of phosphocholine with increased age in the CR population; (iii) an aging metabolic phenotype specific to CF dogs including lower levels of liproprotein fatty acyl groups and allantoin and relatively higher levels of formate with increased age in the CF population. There was no diet metabotype that consistently differentiated the CF and CR dogs irrespective of age. Glucose consistently discriminated between feeding regimes in dogs (≥312 weeks), being relatively lower in the CR group. However, it was observed that creatine and amino acids (valine, leucine, isoleucine, lysine, and phenylalanine) were lower in the CR dogs (<312 weeks), suggestive of differences in energy source utilization. 1H NMR spectroscopic analysis of longitudinal serum profiles enabled an unbiased evaluation of the metabolic markers modulated by a lifetime of caloric restriction and showed differences in the metabolic phenotype of aging due to caloric restriction, which contributes to longevity studies in caloric-restricted animals. Furthermore, OPLS-DA provided a framework such that significant metabolites relating to life extension could be differentiated and integrated with aging processes.
Resumo:
Purpose of review Evidence suggests that short-chain fatty acids (SCFAs) derived from microbial metabolism in the gut play a central role in host homeostasis. The present review describes the current understanding and physiological implications of SCFAs derived from microbial metabolism of nondigestible carbohydrates. Recent findings Recent studies indicate a role for SCFAs, in particular propionate and butyrate, in the metabolic and inflammatory disorders such as obesity, diabetes and inflammatory bowel diseases, through the activation of specific G-protein-coupled receptors and modification of transcription factors. Established prebiotics, such as fructooligosaccharides and galactooligosaccharides, which support the growth of Bifidobacteria, mainly mediate acetate production. Thus, recent identification of prebiotics which are able to stimulate the production of propionate and butyrate by benign saccharolytic populations in the colon is of interest. Summary Manipulation of saccharolytic fermentation by prebiotic substrates is beginning to provide information on structure–function relationships relating to the production of SCFAs, which have multiple roles in host homeostasis.
Resumo:
In vitro studies found that inclusion of dried stinging nettle (Urtica dioica) at 100 mg/g dry matter (DM) increased the pH of a rumen fluid inoculated fermentation buffer by 30% and the effect was persistent for 7 days. Our objective was to evaluate the effects of adding stinging nettle haylage to a total mixed ration on feed intake, eating and rumination activity, rumen pH, milk yield, and milk composition of lactating dairy cows. Six lactating Holstein-Friesian cows were used in a replicated 3 × 3 Latin Square design experiment with 3 treatments and 3 week periods. Treatments were a control (C) high-starch (311 g/kg DM) total mixed ration diet and two treatment diets containing 50 (N5) and 100 (N10) g nettle haylage (DM/kg) as a replacement for ryegrass silage (Lolium perenne). There was an increase (linear, P < 0.010) in the proportion of large particles and a reduction in medium (linear, P = 0.045) and fine particles (linear, P = 0.026) in the diet offered with increasing nettle inclusion. A numerical decrease (linear, P = 0.106) in DM intake (DMI) was observed as nettle inclusion in the diet increased. Milk yield averaged 20.3 kg/day and was not affected by diet. There was a decrease (quadratic, P = 0.01) in the time animals spent ruminating as nettle inclusion in the diet increased, in spite of an increase in the number of boli produced daily for the N5 diet (quadratic, P = 0.031). Animals fed the N10 diet spent less time with a rumen pH below 5.5 (P < 0.05) than cows fed the N5 diet. Averaged over an 8.5 h sampling period, there were no changes in the concentration or proportions of acetate or propionate in the rumen, but feeding nettle haylage reduced the concentrations of n-butyrate (quadratic, P < 0.001), i-butyrate (linear, P < 0.009) and n-caproate (linear, P < 0.003). Milk and fat and protein corrected milk yield were not affected when nettles replaced ryegrass silage in the diet of lactating dairy cows, despite a numerical reduction in feed intake. Rumination activity was reduced by the addition of nettle haylage to the diet, which may reflect differences in fibre structure between the nettle haylage and ryegrass silage fed. Changes observed in rumen pH suggest potential benefits of feeding nettle haylage for reducing rumen acidosis. However, the extent to which these effects were due to the fermentability and structure of the nettle haylage compared to the ryegrass silage fed, or a bioactive component of the nettles, is not certain
Resumo:
The objective was to measure effects of 3-nitrooxypropanol (3NP) on methane production of lactating dairy cows and any associated changes in digestion and energy and nitrogen metabolism. Six Holstein-Friesian dairy cows in mid-lactation were fed twice daily a total mixed ration with maize silage as the primary forage source. Cows received 1 of 3 treatments using an experimental design based on two 3 × 3 Latin squares with 5-wk periods. Treatments were a control placebo or 500 or 2,500 mg/d of 3NP delivered directly into the rumen, via the rumen fistula, in equal doses before each feeding. Measurements of methane production and energy and nitrogen balance were obtained during wk 5 of each period using respiration calorimeters and digestion trials. Measurements of rumen pH (48 h) and postprandial volatile fatty acid and ammonia concentrations were made at the end of wk 4. Daily methane production was reduced by 3NP, but the effects were not dose dependent (reductions of 6.6 and 9.8% for 500 and 2,500 mg/d, respectively). Dosing 3NP had a transitory inhibitory effect on methane production, which may have been due to the product leaving the rumen in liquid outflow or through absorption or metabolism. Changes in rumen concentrations of volatile fatty acids indicated that the pattern of rumen fermentation was affected by both doses of the product, with a decrease in acetate:propionate ratio observed, but that acetate production was inhibited by the higher dose. Dry matter, organic matter, acid detergent fiber, N, and energy digestibility were reduced at the higher dose of the product. The decrease in digestible energy supply was not completely countered by the decrease in methane excretion such that metabolizable energy supply, metabolizable energy concentration of the diet, and net energy balance (milk plus tissue energy) were reduced by the highest dose of 3NP. Similarly, the decrease in nitrogen digestibility at the higher dose of the product was associated with a decrease in body nitrogen balance that was not observed for the lower dose. Milk yield and milk fat concentration and fatty acid composition were not affected but milk protein concentration was greater for the higher dose of 3NP. Twice-daily rumen dosing of 3NP reduced methane production by lactating dairy cows, but the dose of 2,500 mg/d reduced rumen acetate concentration, diet digestibility, and energy supply. Further research is warranted to determine the optimal dose and delivery method of the product. Key words: 3-nitrooxypropanol, methane, digestion, rumen, dairy cow
Resumo:
Objective To investigate the effect of nutrient stimulation of gut hormones by oligofructose supplementation on appetite, energy intake (EI), body weight (BW) and adiposity in overweight and obese volunteers. Methods In a parallel, single-blind and placebo-controlled study, 22 healthy overweight and obese volunteers were randomly allocated to receive 30 g day−1 oligofructose or cellulose for 6 weeks following a 2-week run-in. Subjective appetite and side effect scores, breath hydrogen, serum short chain fatty acids (SCFAs), plasma gut hormones, glucose and insulin concentrations, EI, BW and adiposity were quantified at baseline and post-supplementation. Results Oligofructose increased breath hydrogen (P < 0.0001), late acetate concentrations (P = 0.024), tended to increase total area under the curve (tAUC)420mins peptide YY (PYY) (P = 0.056) and reduced tAUC450mins hunger (P = 0.034) and motivation to eat (P = 0.013) when compared with cellulose. However, there was no significant difference between the groups in other parameters although within group analyses showed an increase in glucagon-like peptide 1 (GLP-1) (P = 0.006) in the cellulose group and a decrease in EI during ad libitum meal in both groups. Conclusions Oligofructose increased plasma PYY concentrations and suppressed appetite, while cellulose increased GLP-1 concentrations. EI decreased in both groups. However, these positive effects did not translate into changes in BW or adiposity.
Resumo:
Summary Reasons for performing study: Metabonomics is emerging as a powerful tool for disease screening and investigating mammalian metabolism. This study aims to create a metabolic framework by producing a preliminary reference guide for the normal equine metabolic milieu. Objectives: To metabolically profile plasma, urine and faecal water from healthy racehorses using high resolution 1H-NMR spectroscopy and to provide a list of dominant metabolites present in each biofluid for the benefit of future research in this area. Study design: This study was performed using seven Thoroughbreds in race training at a single time-point. Urine and faecal samples were collected non-invasively and plasma was obtained from samples taken for routine clinical chemistry purposes. Methods: Biofluids were analysed using 1H-NMR spectroscopy. Metabolite assignment was achieved via a range of 1D and 2D experiments. Results: A total of 102 metabolites were assigned across the three biological matrices. A core metabonome of 14 metabolites was ubiquitous across all biofluids. All biological matrices provided a unique window on different aspects of systematic metabolism. Urine was the most populated metabolite matrix with 65 identified metabolites, 39 of which were unique to this biological compartment. A number of these were related to gut microbial host co-metabolism. Faecal samples were the most metabolically variable between animals; acetate was responsible for the majority (28%) of this variation. Short chain fatty acids were the predominant features identified within this biofluid by 1H-NMR spectroscopy. Conclusions: Metabonomics provides a platform for investigating complex and dynamic interactions between the host and its consortium of gut microbes and has the potential to uncover markers for health and disease in a variety of biofluids. Inherent variation in faecal extracts along with the relative abundance of microbial-mammalian metabolites in urine and invasive nature of plasma sampling, infers that urine is the most appropriate biofluid for the purposes of metabonomic analysis.
Resumo:
The cornicle secretion of Myzus persicae reared on artificial diet only elicits an alarm response in plant-reared conspecifics after the young aphids have been transferred to plants for 7days. Acetate in the form of 0.32% sodium acetate has been added to the diet as an early step in synthesis of the alarm pheromone, (E)-β-farnesene (EBF). The cornicle secretion of diet-reared aphids then elicits an alarm response. However, there is no difference in internal EBF concentration between plant- and diet-reared aphids. Puncturing aphids, either plant- or diet-reared, with a pin shows that both can elicit an alarm response, whereas it is reduced by half with diet-reared individuals. Although there is no significant difference in the concentration of EBF produced, the total amount in diet-reared aphids is increased by acetate in the diet to a level similar to that in plant-reared individuals: the size of aphids reared on an acetate-supplemented diet is increased and comparable with the size of those that are plant-reared. Bioassays with a range of EBF concentrations show a high threshold for the alarm response. It is concluded that the different size of aphids reared on plants and standard diet results in them secreting, respectively, above and below the response threshold.
Resumo:
We investigated the plume structure of a piezo-electric sprayer system, set up to release ethanol in a wind tunnel, using a fast response mini-photoionizaton detector. We recorded the plume structure of four different piezo-sprayer configurations: the sprayer alone; with a 1.6-mm steel mesh shield; with a 3.2-mm steel mesh shield; and with a 5 cm circular upwind baffle. We measured a 12 × 12-mm core at the center of the plume, and both a horizontal and vertical cross-section of the plume, all at 100-, 200-, and 400-mm downwind of the odor source. Significant differences in plume structure were found among all configurations in terms of conditional relative mean concentration, intermittency, ratio of peak concentration to conditional mean concentration, and cross-sectional area of the plume. We then measured the flight responses of the almond moth, Cadra cautella, to odor plumes generated with the sprayer alone, and with the upwind baffle piezo-sprayer configuration, releasing a 13:1 ratio of (9Z,12E)-tetradecadienyl acetate and (Z)-9-tetradecenyl acetate diluted in ethanol at release rates of 1, 10, 100, and 1,000 pg/min. For each configuration, differences in pheromone release rate resulted in significant differences in the proportions of moths performing oriented flight and landing behaviors. Additionally, there were apparent differences in the moths’ behaviors between the two sprayer configurations, although this requires confirmation with further experiments. This study provides evidence that both pheromone concentration and plume structure affect moth orientation behavior and demonstrates that care is needed when setting up experiments that use a piezo-electric release system to ensure the optimal conditions for behavioral observations.