294 resultados para intraseasonal oscillation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intense winter cyclones often lead to hazardous weather over Europe. Previous studies have pointed to a link between the North Atlantic Oscillation (NAO) and strong European windstorms. However, the robustness of this relation for cyclones of varying intensities remains largely unexplored. In this paper, the bi-directional relation between the NAO and cyclones impacting Europe is analyzed for the period 1950–2010 focusing on the sensitivity to storm intensity. Evidence is given that explosive (EC) and non-explosive cyclones (NoEC) predominantly develop under different large-scale circulation conditions over the North Atlantic. Whereas NoEC evolve more frequently under negative and neutral NAO phases, the number of EC is larger under a positive NAO phase, typically characterized by an intensified jet toward Western Europe. Important differences are also found on the dynamics of NAO evolution after peak intensity for both cyclone populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resonance effect of microcrystalline cellulose/castor oil electrorheological (ER) suspensions was studied in a compressed oscillatory squeeze flow under external electric fields. The resonance frequency first increases linearly with increasing external held, and then shift to high-field plateau. The amplitudes of resonance peak increase sharply with the applied fields in the range of 0.17-1.67kV/mm. The phase difference of the reduced displacement relative to the excitation force inverses in the case of resonance. A viscoelasticity model of the ER suspensions, which offers both the equivalent stiffness and the viscous damping, should be responsible for the appearance of resonance. The influence of the electric field on the resonance frequency and the resonance hump is consistent qualitatively with the interpretation of our proposed model. Storage modulus G' was presented for the purpose of investigating this influence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency’s New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterised by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterised by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in conventional facilities will face additional weather-volatility through the monsoonal impact on the length and frequency of production periods (i.e. their load-duration curves).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Madden–Julian Oscillation (MJO) is the chief source of tropical intra-seasonal variability, but is simulated poorly by most state-of-the-art GCMs. Common errors include a lack of eastward propagation at the correct frequency and zonal extent, and too small a ratio of eastward- to westward-propagating variability. Here it is shown that HiGEM, a high-resolution GCM, simulates a very realistic MJO with approximately the correct spatial and temporal scale. Many MJO studies in GCMs are limited to diagnostics which average over a latitude band around the equator, allowing an analysis of the MJO’s structure in time and longitude only. In this study a wider range of diagnostics is applied. It is argued that such an approach is necessary for a comprehensive analysis of a model’s MJO. The standard analysis of Wheeler and Hendon (Mon Wea Rev 132(8):1917–1932, 2004; WH04) is applied to produce composites, which show a realistic spatial structure in the MJO envelopes but for the timing of the peak precipitation in the inter-tropical convergence zone, which bifurcates the MJO signal. Further diagnostics are developed to analyse the MJO’s episodic nature and the “MJO inertia” (the tendency to remain in the same WH04 phase from one day to the next). HiGEM favours phases 2, 3, 6 and 7; has too much MJO inertia; and dies out too frequently in phase 3. Recent research has shown that a key feature of the MJO is its interaction with the diurnal cycle over the Maritime Continent. This interaction is present in HiGEM but is unrealistically weak.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many theories for the Madden-Julian oscillation (MJO) focus on diabatic processes, particularly the evolution of vertical heating and moistening. Poor MJO performance in weather and climate models is often blamed on biases in these processes and their interactions with the large-scale circulation. We introduce one of three components of a model-evaluation project, which aims to connect MJO fidelity in models to their representations of several physical processes, focusing on diabatic heating and moistening. This component consists of 20-day hindcasts, initialised daily during two MJO events in winter 2009-10. The 13 models exhibit a range of skill: several have accurate forecasts to 20 days' lead, while others perform similarly to statistical models (8-11 days). Models that maintain the observed MJO amplitude accurately predict propagation, but not vice versa. We find no link between hindcast fidelity and the precipitation-moisture relationship, in contrast to other recent studies. There is also no relationship between models' performance and the evolution of their diabatic-heating profiles with rain rate. A more robust association emerges between models' fidelity and net moistening: the highest-skill models show a clear transition from low-level moistening for light rainfall to mid-level moistening at moderate rainfall and upper-level moistening for heavy rainfall. The mid-level moistening, arising from both dynamics and physics, may be most important. Accurately representing many processes may be necessary, but not sufficient for capturing the MJO, which suggests that models fail to predict the MJO for a broad range of reasons and limits the possibility of finding a panacea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The "Vertical structure and physical processes of the Madden-Julian oscillation (MJO)" project comprises three experiments, designed to evaluate comprehensively the heating, moistening and momentum associated with tropical convection in general circulation models (GCMs). We consider here only those GCMs that performed all experiments. Some models display relatively higher or lower MJO fidelity in both initialized hindcasts and climate simulations, while others show considerable variations in fidelity between experiments. Fidelity in hindcasts and climate simulations are not meaningfully correlated. The analysis of each experiment led to the development of process-oriented diagnostics, some of which distinguished between GCMs with higher or lower fidelity in that experiment. We select the most discriminating diagnostics and apply them to data from all experiments, where possible, to determine if correlations with MJO fidelity hold across scales and GCM states. While normalized gross moist stability had a small but statistically significant correlation with MJO fidelity in climate simulations, we find no link with fidelity in medium-range hindcasts. Similarly, there is no association between timestep-to-timestep rainfall variability, identified from short hindcasts, and fidelity in medium-range hindcasts or climate simulations. Two metrics that relate precipitation to free-tropospheric moisture--the relative humidity for extreme daily precipitation, and variations in the height and amplitude of moistening with rain rate--successfully distinguish between higher- and lower-fidelity GCMs in hindcasts and climate simulations. To improve the MJO, developers should focus on relationships between convection and both total moisture and its rate of change. We conclude by offering recommendations for further experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of diabatic heating and moistening processes from 12-36 hour lead time forecasts from 12 Global Circulation Models are presented as part of the "Vertical structure and physical processes of the Madden-Julian Oscillation (MJO)" project. A lead time of 12-36 hours is chosen to constrain the large scale dynamics and thermodynamics to be close to observations while avoiding being too close to the initial spin-up for the models as they adjust to being driven from the YOTC analysis. A comparison of the vertical velocity and rainfall with the observations and YOTC analysis suggests that the phases of convection associated with the MJO are constrained in most models at this lead time although the rainfall in the suppressed phase is typically overestimated. Although the large scale dynamics is reasonably constrained, moistening and heating profiles have large inter-model spread. In particular, there are large spreads in convective heating and moistening at mid-levels during the transition to active convection. Radiative heating and cloud parameters have the largest relative spread across models at upper levels during the active phase. A detailed analysis of time step behaviour shows that some models show strong intermittency in rainfall and differences in the precipitation and dynamics relationship between models. The wealth of model outputs archived during this project is a very valuable resource for model developers beyond the study of the MJO. In addition, the findings of this study can inform the design of process model experiments, and inform the priorities for field experiments and future observing systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This 20th anniversary edition of PAGES news explores the elusive El Niño-Southern Oscillation (ENSO) from a paleo-perspective. The initiative for this special section came out of a 2011 PMIP workshop. In a mini section, a newly introduced format in the PAGES newsletter, four articles on data assimilation address methods of combining observations and model simulations. Finally, this newsletter also features several reports on the 2013 2nd Young Scientists Meeting held in Goa, India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research suggests Eurasian snow-covered area (SCA) influences the Arctic Oscillation (AO) via the polar vortex. This could be important for Northern Hemisphere winter season forecasting. A fairly strong negative correlation between October SCA and the AO, based on both monthly and daily observational data, has been noted in the literature. While reproducing these previous links when using the same data, we find no further evidence of the link when using an independent satellite data source, or when using a climate model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined influences of the westerly phase of the quasi-biennial oscillation (QBO-W) and solar maximum (Smax) conditions on the Northern Hemisphere extratropical winter circulation are investigated using reanalysis data and Center for Climate System Research/National Institute for Environmental Studies chemistry climate model (CCM) simulations. The composite analysis for the reanalysis data indicates strengthened polar vortex in December followed by weakened polar vortex in February–March for QBO-W during Smax (QBO-W/Smax) conditions. This relationship need not be specific to QBO-W/Smax conditions but may just require strengthened vortex in December, which is more likely under QBO-W/Smax. Both the reanalysis data and CCM simulations suggest that dynamical processes of planetary wave propagation and meridional circulation related to QBO-W around polar vortex in December are similar in character to those related to Smax; furthermore, both processes may work in concert to maintain stronger vortex during QBO-W/Smax. In the reanalysis data, the strengthened polar vortex in December is associated with the development of north–south dipole tropospheric anomaly in the Atlantic sector similar to the North Atlantic oscillation (NAO) during December–January. The structure of the north–south dipole anomaly has zonal wavenumber 1 (WN1) component, where the longitude of anomalous ridge overlaps with that of climatological ridge in the North Atlantic in January. This implies amplification of the WN1 wave and results in the enhancement of the upward WN1 propagation from troposphere into stratosphere in January, leading to the weakened polar vortex in February–March. Although WN2 waves do not play a direct role in forcing the stratospheric vortex evolution, their tropospheric response to QBO-W/Smax conditions appears to be related to the maintenance of the NAO-like anomaly in the high-latitude troposphere in January. These results may provide a possible explanation for the mechanisms underlying the seasonal evolution of wintertime polar vortex anomalies during QBO-W/Smax conditions and the role of troposphere in this evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation of wind-optimal transatlantic flight routes and their turbulence potential is investigated to understand how upper-level winds and large-scale flow patterns can affect the efficiency and safety of long-haul flights. In this study, the wind-optimal routes (WORs) that minimize the total flight time by considering wind variations are modeled for flights between John F. Kennedy International Airport (JFK) in New York, New York, and Heathrow Airport (LHR) in London, United Kingdom, during two distinct winter periods of abnormally high and low phases of North Atlantic Oscillation (NAO) teleconnection patterns. Eastbound WORs approximate the JFK–LHR great circle (GC) route following northerly shifted jets in the +NAO period. Those WORs deviate southward following southerly shifted jets during the −NAO period, because eastbound WORs fly closely to the prevailing westerly jets to maximize tailwinds. Westbound WORs, however, spread meridionally to avoid the jets near the GC in the +NAO period to minimize headwinds. In the −NAO period, westbound WORs are north of the GC because of the southerly shifted jets. Consequently, eastbound WORs are faster but have higher probabilities of encountering clear-air turbulence than westbound ones, because eastbound WORs are close to the jet streams, especially near the cyclonic shear side of the jets in the northern (southern) part of the GC in the +NAO (−NAO) period. This study suggests how predicted teleconnection weather patterns can be used for long-haul strategic flight planning, ultimately contributing to minimizing aviation’s impact on the environment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multiple regression analysis of the NCEP-NCAR reanalysis dataset shows a response to increased solar activity of a weakening and poleward shift of the subtropical jets. This signal is separable from other influences, such as those of El Nino-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO), and is very similar to that seen in previous studies using global circulation models (GCMs) of the effects of an increase in solar spectral irradiance. The response to increased stratospheric (volcanic) aerosol is found in the data to be a weakening and equatorward shift of the jets. The GCM studies of the solar influence also showed an impact on tropospheric mean meridional circulation with a weakening and expansion of the tropical Hadley cells and a poleward shift of the Ferrel cells. To understand the mechanisms whereby the changes in solar irradiance affect tropospheric winds and circulation, experiments have been carried out with a simplified global circulation model. The results show that generic heating of the lower stratosphere tends to weaken the subtropical jets and the tropospheric mean meridional circulations. The positions of the jets, and the extent of the Hadley cells, respond to the distribution of the stratospheric heating, with low-latitude heating forcing them to move poleward, and high-latitude or latitudinally uniform heating forcing them equatorward. The patterns of response are similar to those that are found to be a result of the solar or volcanic influences, respectively, in the data analysis. This demonstrates that perturbations to the heat balance of the lower stratosphere, such as those brought about by solar or volcanic activity, can produce changes in the mean tropospheric circulation, even without any direct forcing below the tropopause.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The clustering in time (seriality) of extratropical cyclones is responsible for large cumulative insured losses in western Europe, though surprisingly little scientific attention has been given to this important property. This study investigates and quantifies the seriality of extratropical cyclones in the Northern Hemisphere using a point-process approach. A possible mechanism for serial clustering is the time-varying effect of the large-scale flow on individual cyclone tracks. Another mechanism is the generation by one parent cyclone of one or more offspring through secondary cyclogenesis. A long cyclone-track database was constructed for extended October March winters from 1950 to 2003 using 6-h analyses of 850-mb relative vorticity derived from the NCEP NCAR reanalysis. A dispersion statistic based on the varianceto- mean ratio of monthly cyclone counts was used as a measure of clustering. It reveals extensive regions of statistically significant clustering in the European exit region of the North Atlantic storm track and over the central North Pacific. Monthly cyclone counts were regressed on time-varying teleconnection indices with a log-linear Poisson model. Five independent teleconnection patterns were found to be significant factors over Europe: the North Atlantic Oscillation (NAO), the east Atlantic pattern, the Scandinavian pattern, the east Atlantic western Russian pattern, and the polar Eurasian pattern. The NAO alone is not sufficient for explaining the variability of cyclone counts in the North Atlantic region and western Europe. Rate dependence on time-varying teleconnection indices accounts for the variability in monthly cyclone counts, and a cluster process did not need to be invoked.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of the Asian summer monsoon is documented and compared using the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA) and the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) Reanalysis. In terms of seasonal mean climatologies the results suggest that, in several respects, the ERA is superior to the NCEP-NCAR Reanalysis. The overall better simulation of the precipitation and hence the diabatic heating field over the monsoon domain in ERA means that the analyzed circulation is probably nearer reality. In terms of interannual variability, inconsistencies in the definition of weak and strong monsoon years based on typical monsoon indices such as All-India Rainfall (AIR) anomalies and the large-scale wind shear based dynamical monsoon index (DMI) still exist. Two dominant modes of interannual variability have been identified that together explain nearly 50% of the variance. Individually, they have many features in common with the composite flow patterns associated with weak and strong monsoons, when defined in terms of regional AIR anomalies and the large-scale DMI. The reanalyses also show a common dominant mode of intraseasonal variability that describes the latitudinal displacement of the tropical convergence zone from its oceanic-to-continental regime and essentially captures the low-frequency active/break cycles of the monsoon. The relationship between interannual and intraseasonal variability has been investigated by considering the probability density function (PDF) of the principal component of the dominant intraseasonal mode. Based on the DMI, there is an indication that in years with a weaker monsoon circulation, the PDF is skewed toward negative values (i,e., break conditions). Similarly, the PDFs for El Nino and La Nina years suggest that El Nino predisposes the system to more break spells, although the sample size may limit the statistical significance of the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of selected observing systems on the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA40) is explored by mimicking observational networks of the past. This is accomplished by systematically removing observations from the present observational data base used by ERA40. The observing systems considered are a surface-based system typical of the period prior to 1945/50, obtained by only retaining the surface observations, a terrestrial-based system typical of the period 1950-1979, obtained by removing all space-based observations, and finally a space-based system, obtained by removing all terrestrial observations except those for surface pressure. Experiments using these different observing systems have been limited to seasonal periods selected from the last 10 yr of ERA40. The results show that the surface-based system has severe limitations in reconstructing the atmospheric state of the upper troposphere and stratosphere. The terrestrial system has major limitations in generating the circulation of the Southern Hemisphere with considerable errors in the position and intensity of individual weather systems. The space-based system is able to analyse the larger-scale aspects of the global atmosphere almost as well as the present observing system but performs less well in analysing the smaller-scale aspects as represented by the vorticity field. Here, terrestrial data such as radiosondes and aircraft observations are of paramount importance. The terrestrial system in the form of a limited number of radiosondes in the tropics is also required to analyse the quasi-biennial oscillation phenomenon in a proper way. The results also show the dominance of the satellite observing system in the Southern Hemisphere. These results all indicate that care is required in using current reanalyses in climate studies due to the large inhomogeneity of the available observations, in particular in time.