121 resultados para hadronic transport model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common approaches to the simulation of borehole heat exchangers (BHEs) assume heat transfer in circulating fluid and grout to be in a quasi-steady state and ignore fluctuations in fluid temperature due to transport of the fluid around the loop. However, in domestic ground source heat pump (GSHP) systems, the heat pump and circulating pumps switch on and off during a given hour; therefore, the effect of the thermal mass of the circulating fluid and the dynamics of fluid transport through the loop has important implications for system design. This may also be important in commercial systems that are used intermittently. This article presents transient simulation of a domestic GSHP system with a single BHE using a dynamic three-dimensional (3D) numerical BHE model. The results show that delayed response associated with the transit of fluid along the pipe loop is of some significance in moderating swings in temperature during heat pump operation. In addition, when 3D effects are considered, a lower heat transfer rate is predicted during steady operations. These effects could be important when considering heat exchanger design and system control. The results will be used to develop refined two-dimensional models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During winter the ocean surface in polar regions freezes over to form sea ice. In the summer the upper layers of sea ice and snow melts producing meltwater that accumulates in Arctic melt ponds on the surface of sea ice. An accurate estimate of the fraction of the sea ice surface covered in melt ponds is essential for a realistic estimate of the albedo for global climate models. We present a melt-pond–sea-ice model that simulates the three-dimensional evolution of melt ponds on an Arctic sea ice surface. The advancements of this model compared to previous models are the inclusion of snow topography; meltwater transport rates are calculated from hydraulic gradients and ice permeability; and the incorporation of a detailed one-dimensional, thermodynamic radiative balance. Results of model runs simulating first-year and multiyear sea ice are presented. Model results show good agreement with observations, with duration of pond coverage, pond area, and ice ablation comparing well for both the first-year ice and multiyear ice cases. We investigate the sensitivity of the melt pond cover to changes in ice topography, snow topography, and vertical ice permeability. Snow was found to have an important impact mainly at the start of the melt season, whereas initial ice topography strongly controlled pond size and pond fraction throughout the melt season. A reduction in ice permeability allowed surface flooding of relatively flat, first-year ice but had little impact on the pond coverage of rougher, multiyear ice. We discuss our results, including model shortcomings and areas of experimental uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecosystem fluxes of energy, water, and CO2 result in spatial and temporal variations in atmospheric properties. In principle, these variations can be used to quantify the fluxes through inverse modelling of atmospheric transport, and can improve the understanding of processes and falsifiability of models. We investigated the influence of ecosystem fluxes on atmospheric CO2 in the vicinity of the WLEF-TV tower in Wisconsin using an ecophysiological model (Simple Biosphere, SiB2) coupled to an atmospheric model (Regional Atmospheric Modelling System). Model parameters were specified from satellite imagery and soil texture data. In a companion paper, simulated fluxes in the immediate tower vicinity have been compared to eddy covariance fluxes measured at the tower, with meteorology specified from tower sensors. Results were encouraging with respect to the ability of the model to capture observed diurnal cycles of fluxes. Here, the effects of fluxes in the tower footprint were also investigated by coupling SiB2 to a high-resolution atmospheric simulation, so that the model physiology could affect the meteorological environment. These experiments were successful in reproducing observed fluxes and concentration gradients during the day and at night, but revealed problems during transitions at sunrise and sunset that appear to be related to the canopy radiation parameterization in SiB2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quasi-biennial oscillation (QBO) in the equatorial zonal wind is an outstanding phenomenon of the atmosphere. The QBO is driven by a broad spectrum of waves excited in the tropical troposphere and modulates transport and mixing of chemical compounds in the whole middle atmosphere. Therefore, the simulation of the QBO in general circulation models and chemistry climate models is an important issue. Here, aspects of the climatology and forcing of a spontaneously occurring QBO in a middle-atmosphere model are evaluated, and its influence on the climate and variability of the tropical middle atmosphere is investigated. Westerly and easterly phases are considered separately, and 40-yr ECMWF Re-Analysis (ERA-40) data are used as a reference where appropriate. It is found that the simulated QBO is realistic in many details. Resolved large-scale waves are particularly important for the westerly phase, while parameterized gravity wave drag is more important for the easterly phase. Advective zonal wind tendencies are important for asymmetries between westerly and easterly phases, as found for the suppression of the easterly phase downward propagation. The simulation of the QBO improves the tropical upwelling and the atmospheric tape recorder compared to a model without a QBO. The semiannual oscillation is simulated realistically only if the QBO is represented. In sensitivity tests, it is found that the simulated QBO is strongly sensitive to changes in the gravity wave sources. The sensitivity to the tested range of horizontal resolutions is small. The stratospheric vertical resolution must be better than 1 km to simulate a realistic QBO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tropical tropopause is considered to be the main region of upward transport of tropospheric air carrying water vapor and other tracers to the tropical stratosphere. The lower tropical stratosphere is also the region where the quasi-biennial oscillation (QBO) in the zonal wind is observed. The QBO is positioned in the region where the upward transport of tropospheric tracers to the overworld takes place. Hence the QBO can in principle modulate these transports by its secondary meridional circulation. This modulation is investigated in this study by an analysis of general circulation model (GCM) experiments with an assimilated QBO. The experiments show, first, that the temperature signal of the QBO modifies the specific humidity in the air transported upward and, second, that the secondary meridional circulation modulates the velocity of the upward transport. Thus during the eastward phase of the QBO the upward moving air is moister and the upward velocity is less than during the westward phase of the QBO. It was further found that the QBO period is too short to allow an equilibration of the moisture in the QBO region. This causes a QBO signal of the moisture which is considerably smaller than what could be obtained in the limiting case of indefinitely long QBO phases. This also allows a high sensitivity of the mean moisture over a QBO cycle to the El Niño-Southern Oscillation (ENSO) phenomena or major tropical volcanic eruptions. The interplay of sporadic volcanic eruptions, ENSO, and QBO can produce low-frequency variability in the water vapor content of the tropical stratosphere, which renders the isolation of the QBO signal in observational data of water vapor in the equatorial lower stratosphere difficult.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our knowledge of stratospheric O3-N2O correlations is extended, and their potential for model-measurement comparison assessed, using data from the Atmospheric Chemistry Experiment (ACE) satellite and the Canadian Middle Atmosphere Model (CMAM). ACE provides the first comprehensive data set for the investigation of interhemispheric, interseasonal, and height-resolved differences of the O_3-N_2O correlation structure. By subsampling the CMAM data, the representativeness of the ACE data is evaluated. In the middle stratosphere, where the correlations are not compact and therefore mainly reflect the data sampling, joint probability density functions provide a detailed picture of key aspects of transport and mixing, but also trace polar ozone loss. CMAM captures these important features, but exhibits a displacement of the tropical pipe into the Southern Hemisphere (SH). Below about 21 km, the ACE data generally confirm the compactness of the correlations, although chemical ozone loss tends to destroy the compactness during late winter/spring, especially in the SH. This allows a quantitative comparison of the correlation slopes in the lower and lowermost stratosphere (LMS), which exhibit distinct seasonal cycles that reveal the different balances between diabatic descent and horizontal mixing in these two regions in the Northern Hemisphere (NH), reconciling differences found in aircraft measurements, and the strong role of chemical ozone loss in the SH. The seasonal cycles are qualitatively well reproduced by CMAM, although their amplitude is too weak in the NH LMS. The correlation slopes allow a "chemical" definition of the LMS, which is found to vary substantially in vertical extent with season.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report on a study conducted using the Middle Atmospheric Nitrogen TRend Assessment (MANTRA) balloon measurements of stratospheric constituents and temperature and the Canadian Middle Atmosphere Model (CMAM). Three different kinds of data are used to assess the inter-consistency of the combined dataset: single profiles of long-lived species from MANTRA 1998, sparse climatologies from the ozonesonde measurements during the four MANTRA campaigns and from HALOE satellite measurements, and the CMAM climatology. In doing so, we evaluate the ability of the model to reproduce the measured fields and to thereby test our ability to describe mid-latitude summertime stratospheric processes. The MANTRA campaigns were conducted at Vanscoy, Saskatchewan, Canada (52◦ N, 107◦ W)in late August and early September of 1998, 2000, 2002 and 2004. During late summer at mid-latitudes, the stratosphere is close to photochemical control, providing an ideal scenario for the study reported here. From this analysis we find that: (1) reducing the value for the vertical diffusion coefficient in CMAM to a more physically reasonable value results in the model better reproducing the measured profiles of long-lived species; (2) the existence of compact correlations among the constituents, as expected from independent measurements in the literature and from models, confirms the self-consistency of the MANTRA measurements; and (3) the 1998 measurements show structures in the chemical species profiles that can be associated with transport, adding to the growing evidence that the summertime stratosphere can be much more disturbed than anticipated. The mechanisms responsible for such disturbances need to be understood in order to assess the representativeness of the measurements and to isolate longterm trends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The persistence and decay of springtime total ozone anomalies over the entire extratropics (midlatitudes plus polar regions) is analysed using results from the Canadian Middle Atmosphere Model (CMAM), a comprehensive chemistry-climate model. As in the observations, interannual anomalies established through winter and spring persist with very high correlation coefficients (above 0.8) through summer until early autumn, while decaying in amplitude as a result of photochemical relaxation in the quiescent summertime stratosphere. The persistence and decay of the ozone anomalies in CMAM agrees extremely well with observations, even in the southern hemisphere when the model is run without heterogeneous chemistry (in which case there is no ozone hole and the seasonal cycle of ozone is quite different from observations). However in a version of CMAM with strong vertical diffusion, the northern hemisphere anomalies decay far too rapidly compared to observations. This shows that ozone anomaly persistence and decay does not depend on how the springtime anomalies are created or on their magnitude, but reflects the transport and photochemical decay in the model. The seasonality of the long-term trends over the entire extratropics is found to be explained by the persistence of the interannual anomalies, as in the observations, demonstrating that summertime ozone trends reflect winter/spring trends rather than any change in summertime ozone chemistry. However this mechanism fails in the northern hemisphere midlatitudes because of the relatively large impact, compared to observations, of the CMAM polar anomalies. As in the southern hemisphere, the influence of polar ozone loss in CMAM increases the midlatitude summertime loss, leading to a relatively weak seasonal dependence of ozone loss in the Northern Hemisphere compared to the observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulations of the stratosphere from thirteen coupled chemistry-climate models (CCMs) are evaluated to provide guidance for the interpretation of ozone predictions made by the same CCMs. The focus of the evaluation is on how well the fields and processes that are important for determining the ozone distribution are represented in the simulations of the recent past. The core period of the evaluation is from 1980 to 1999 but long-term trends are compared for an extended period (1960–2004). Comparisons of polar high-latitude temperatures show that most CCMs have only small biases in the Northern Hemisphere in winter and spring, but still have cold biases in the Southern Hemisphere spring below 10 hPa. Most CCMs display the correct stratospheric response of polar temperatures to wave forcing in the Northern, but not in the Southern Hemisphere. Global long-term stratospheric temperature trends are in reasonable agreement with satellite and radiosonde observations. Comparisons of simulations of methane, mean age of air, and propagation of the annual cycle in water vapor show a wide spread in the results, indicating differences in transport. However, for around half the models there is reasonable agreement with observations. In these models the mean age of air and the water vapor tape recorder signal are generally better than reported in previous model intercomparisons. Comparisons of the water vapor and inorganic chlorine (Cly) fields also show a large intermodel spread. Differences in tropical water vapor mixing ratios in the lower stratosphere are primarily related to biases in the simulated tropical tropopause temperatures and not transport. The spread in Cly, which is largest in the polar lower stratosphere, appears to be primarily related to transport differences. In general the amplitude and phase of the annual cycle in total ozone is well simulated apart from the southern high latitudes. Most CCMs show reasonable agreement with observed total ozone trends and variability on a global scale, but a greater spread in the ozone trends in polar regions in spring, especially in the Arctic. In conclusion, despite the wide range of skills in representing different processes assessed here, there is sufficient agreement between the majority of the CCMs and the observations that some confidence can be placed in their predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the stratosphere, chemical tracers are drawn systematically from the equator to the pole. This observed Brewer–Dobson circulation is driven by wave drag, which in the stratosphere arises mainly from the breaking and dissipation of planetary-scale Rossby waves. While the overall sense of the circulation follows from fundamental physical principles, a quantitative theoretical understanding of the connection between wave drag and Lagrangian transport is limited to linear, small-amplitude waves. However, planetary waves in the stratosphere generally grow to a large amplitude and break in a strongly nonlinear fashion. This paper addresses the connection between stratospheric wave drag and Lagrangian transport in the presence of strong nonlinearity, using a mechanistic three-dimensional primitive equations model together with offline particle advection. Attention is deliberately focused on a weak forcing regime, such that sudden warmings do not occur and a quasi-steady state is reached, in order to examine this question in the cleanest possible context. Wave drag is directly linked to the transformed Eulerian mean (TEM) circulation, which is often used as a surrogate for mean Lagrangian motion. The results show that the correspondence between the TEM and mean Lagrangian velocities is quantitatively excellent in regions of linear, nonbreaking waves (i.e., outside the surf zone), where streamlines are not closed. Within the surf zone, where streamlines are closed and meridional particle displacements are large, the agreement between the vertical components of the two velocity fields is still remarkably good, especially wherever particle paths are coherent so that diabatic dispersion is minimized. However, in this region the meridional mean Lagrangian velocity bears little relation to the meridional TEM velocity, and reflects more the kinematics of mixing within and across the edges of the surf zone. The results from the mechanistic model are compared with those from the Canadian Middle Atmosphere Model to test the robustness of the conclusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A record of dust deposition events between 2009 and 2012 on Mt. Elbrus, Caucasus Mountains derived from a snow pit and a shallow ice core is presented for the first time for this region. A combination of isotopic analysis, SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived using the HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (cf. 20–100 km) resolution. Seventeen dust deposition events were detected; fourteen occurred in March–June, one in February and two in October. Four events originated in the Sahara, predominantly in north-eastern Libya and eastern Algeria. Thirteen events originated in the Middle East, in the Syrian Desert and northern Mesopotamia, from a mixture of natural and anthropogenic sources. Dust transportation from Sahara was associated with vigorous Saharan depressions, strong surface winds in the source region and mid-tropospheric south-westerly flow with daily winds speeds of 20–30 m s−1 at 700 hPa level and, although these events were less frequent, they resulted in higher dust concentrations in snow. Dust transportation from the Middle East was associated with weaker depressions forming over the source region, high pressure centered over or extending towards the Caspian Sea and a weaker southerly or south-easterly flow towards the Caucasus Mountains with daily wind speeds of 12–18 m s−1 at 700 hPa level. Higher concentrations of nitrates and ammonium characterise dust from the Middle East deposited on Mt. Elbrus in 2009 indicating contribution of anthropogenic sources. The modal values of particle size distributions ranged between 1.98 μm and 4.16 μm. Most samples were characterised by modal values of 2.0–2.8 μm with an average of 2.6 μm and there was no significant difference between dust from the Sahara and the Middle East.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral equation formulation, has been developed. By this method a general polygonal region with curved edges can be mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a multiply connected region can be mapped onto a regular region with the same connectivity. A stretching transformation on the conformally generated mesh has also been used to provide greater detail where it is needed close to the coast, with larger mesh sizes further offshore, thereby minimizing the computing effort whilst maximizing accuracy. The curvilinear hydrodynamic and solute model has been developed based on a robust rectilinear model. The hydrodynamic equations are approximated using the ADI finite difference scheme with a staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex practical applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During long-range transport, many distinct processes – including photochemistry, deposition, emissions and mixing – contribute to the transformation of air mass composition. Partitioning the effects of different processes can be useful when considering the sensitivity of chemical transformation to, for example, a changing environment or anthropogenic influence. However, transformation is not observed directly, since mixing ratios are measured, and models must be used to relate changes to processes. Here, four cases from the ITCT-Lagrangian 2004 experiment are studied. In each case, aircraft intercepted a distinct air mass several times during transport over the North Atlantic, providing a unique dataset and quantifying the net changes in composition from all processes. A new framework is presented to deconstruct the change in O3 mixing ratio (Δ O3) into its component processes, which were not measured directly, taking into account the uncertainty in measurements, initial air mass variability and its time evolution. The results show that the net chemical processing (Δ O3chem) over the whole simulation is greater than net physical processing (Δ O3phys) in all cases. This is in part explained by cancellation effects associated with mixing. In contrast, each case is in a regime of either net photochemical destruction (lower tropospheric transport) or production (an upper tropospheric biomass burning case). However, physical processes influence O3 indirectly through addition or removal of precursor gases, so that changes to physical parameters in a model can have a larger effect on Δ O3chem than Δ O3phys. Despite its smaller magnitude, the physical processing distinguishes the lower tropospheric export cases, since the net photochemical O3 change is −5 ppbv per day in all three cases. Processing is quantified using a Lagrangian photochemical model with a novel method for simulating mixing through an ensemble of trajectories and a background profile that evolves with them. The model is able to simulate the magnitude and variability of the observations (of O3, CO, NOy and some hydrocarbons) and is consistent with the time-average OH following air-masses inferred from hydrocarbon measurements alone (by Arnold et al., 2007). Therefore, it is a useful new method to simulate air mass evolution and variability, and its sensitivity to process parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The climatology of ozone produced by the Canadian Middle Atmosphere Model (CMAM) is presented. This three-dimensional global model incorporates the radiative feedbacks of ozone and water vapor calculated on-line with a photochemical module. This module includes a comprehensive gas-phase reaction set and a limited set of heterogeneous reactions to account for processes occurring on background sulphate aerosols. While transport is global, photochemistry is solved from about 400 hPa to the top of the model at ∼95 km. This approach provides a complete and comprehensive representation of transport, emission, and photochemistry of various constituents from the surface to the mesopause region. A comparison of model results with observations indicates that the ozone distribution and variability are in agreement with observations throughout most of the model domain. Column ozone annual variation is represented to within 5–10% of the observations except in the Southern Hemisphere for springtime high latitudes. The vertical ozone distribution is generally well represented by the model up to the mesopause region. Nevertheless, in the upper stratosphere, the model generally underestimates the amount of ozone as well as the latitudinal tilting of ozone isopleths at high latitude. Ozone variability is analyzed and compared with measurements. The comparison shows that the phase and amplitude of the seasonal variation as well as shorter timescale variations are well represented by the model at various latitudes and heights. Finally, the impact of incorporating ozone radiative feedback on the model climatology is isolated. It is found that the incorporation of ozone radiative feedback results in a cooling of ∼8 K in the summer stratopause region, which corrects a warm bias that results when climatological ozone is used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple, dynamically consistent model of mixing and transport in Rossby-wave critical layers is obtained from the well-known Stewartson–Warn–Warn (SWW) solution of Rossby-wave critical-layer theory. The SWW solution is thought to be a useful conceptual model of Rossby-wave breaking in the stratosphere. Chaotic advection in the model is a consequence of the interaction between a stationary and a transient Rossby wave. Mixing and transport are characterized separately with a number of quantitative diagnostics (e.g. mean-square dispersion, lobe dynamics, and spectral moments), and with particular emphasis on the dynamics of the tracer field itself. The parameter dependences of the diagnostics are examined: transport tends to increase monotonically with increasing perturbation amplitude whereas mixing does not. The robustness of the results is investigated by stochastically perturbing the transient-wave phase speed. The two-wave chaotic advection model is contrasted with a stochastic single-wave model. It is shown that the effects of chaotic advection cannot be captured by stochasticity alone.