131 resultados para forest futures
Resumo:
This study examines thermally induced flows (or “snow breezes”) associated with snow cover in the boreal forests of Canada. Observations from a lake less than 4 km across were made as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) winter field campaign. These are interpreted with the aid of idealized three-dimensional mesoscale model simulations representing the forest-lake contrast. Typically, strong forest-lake temperature contrasts develop in the lowest 50 m of the atmosphere during the morning. The resulting pressure gradients induce low-level onshore wind components across the lake. This snow breeze persists into the afternoon provided that large-scale winds remain light. A characteristic snow breeze signature is clearly evident in wind observations averaged over 27 days of data, in agreement with model simulations. The study suggests that snow breezes will regularly develop over the many larger lakes and other unvegetated areas in the region.
Resumo:
The analysis presented in this paper suggests that the larger heating over the boreal forest in the spring and summer, as contrasted with weaker heating over the adjacent tundra, results in a preferred position of the polar front along the northern edge of the boreal forest. This positioning is well documented in the literature (see, for example, Bryson, 1966; Barry and Hare, 1974; Kreps and Barry, 1970). This heating results from the lower albedo of the boreal forest which is not compensated by an increase in transpiration, even with the larger leaf area index of the forest. The warmer temperatures are mixed upward by the deep boundary layer over the forest and mesoscale circulations which result from the patchiness of heating associated with the heterogeneous landscapes of the forest. Thus in contrast to previous assumptions in which the arctic front position in the summer determines the northern limit of the boreal tree line, our study suggests the boreal forest itself significantly influences the preferred position of the front. This conclusion reinforces the findings of Bonan et al. (1992) and Foley et al. (1994) on the important role of boreal forest-tundra interactions with climate.
Resumo:
In this paper, we examine the temporal stability of the evidence for two commodity futures pricing theories. We investigate whether the forecast power of commodity futures can be attributed to the extent to which they exhibit seasonality and we also consider whether there are time varying parameters or structural breaks in these pricing relationships. Compared to previous studies, we find stronger evidence of seasonality in the basis, which supports the theory of storage. The power of the basis to forecast subsequent price changes is also strengthened, while results on the presence of a risk premium are inconclusive. In addition, we show that the forecasting power of commodity futures cannot be attributed to the extent to which they exhibit seasonality. We find that in most cases where structural breaks occur, only changes in the intercepts and not the slopes are detected, illustrating that the forecast power of the basis is stable over different economic environments.
Resumo:
In recent years, researchers and policy makers have recognized that nontimber forest products (NTFPs) extracted from forests by rural people can make a significant contribution to their well-being and to the local economy. This study presents and discusses data that describe the contribution of NTFPs to cash income in the dry deciduous forests of Orissa and Jharkhand, India. In its focus on cash income, this study sheds light on how the sale of NTFPs and products that use NTFPs as inputs contribute to the rural economy. From analysis of a unique data set that was collected over the course of a year, the study finds that the contribution of NTFPs to cash income varies across ecological settings, seasons, income level, and caste. Such variation should inform where and when to apply NTFP forest access and management policies.
Resumo:
When villagers extract resources, such as fuelwood, fodder, or medicinal plants from forests, their decisions over where and how much to extract are influenced by market conditions, their particular opportunity costs of time, minimum consumption needs, and access to markets. This paper develops an optimization model of villagers’ extraction behavior that clarifies how, and under what conditions, policies that create incentives such as improved returns to extraction in a buffer zone might be used instead of adversarial enforcement efforts to protect a forest’s pristine ‘‘inner core.’’
Resumo:
Property ownership can tie up large amounts of capital and management energy that business could employ more productively elsewhere. Competitive pressures, accounting changes and increasingly sophisticated occupier requirements are building demand for new and innovative ways to satisfy corporate occupation needs. The investment climate is also changing. Falling interest rates and falling inflation can be expected to undermine returns from the traditional FRI lease. In future, investment returns will be more dependent on active and innovative management geared to the needs of occupiers on whom income depends. Occupier and investor interests, therefore, look set to coincide, but unlocking the potential for both parties will depend on developing new finance and investment vehicles that align their respective needs. In the UK, examples include PFI in the public sector and off-balance sheet financing in the private sector. In the USA, “synthetic lease” structures have also become popular. Growing investment market experience in assessing risks and returns suggests scope for further innovative arrangements in the corporate sector. But how can such arrangements be structured? What are the risks, drivers and barriers?
Resumo:
This chapter takes the example of local African beekeeping to explore how the forest can act as an important locus for men's work in Western Tanzania. Here we scrutinise how beekeeping enables its practitioners to situate themselves in the forest locality and observe how the social relationships, interactions and everyday practices entailed in living and working together are a means through which beekeepers generate a sense of belonging and identity. As part and parcel of this process, men transmit their skills to a new generation, thus reproducing themselves and their social environment.
Resumo:
This report (which is part of the EPSRC Retrofit 2050 project) sets out three contrasting long term (2050) visions for retrofit city-regional futures, developed through an in-depth participatory backcasting and foresight process. These contextual scenarios are intended as a tool which can be adapted and used by a wide variety of stakeholders and organisations to stimulate discussion and inform future policy and long-term planning.
Resumo:
We used fossil pollen to investigate the response of the eastern Chiquitano seasonally-dry tropical forest (SDTF), lowland Bolivia, to high-amplitude climate change associated with glacial–interglacial cycles. Changes in the structure, composition and diversity of the past vegetation are compared with palaeoclimate data previously reconstructed from the same record, and these results shed light on the biogeographic history of today’s highly disjunct blocks of SDTF across South America. We demonstrate that lower glacial temperatures limited tropical forest in the Chiquitanía region, and suggest that SDTF was absent or restricted at latitudes below 17°S, the proposed location of the majority of the hypothesized ‘Pleistocene dry forest arc’ (PDFA). At 19500 yrs b.p., warming supported the establishment of a floristically-distinct SDTF, which showed little change throughout the glacial–Holocene transition, despite a shift to significantly wetter conditions beginning ca. 12500–12200 yrs b.p. Anadenanthera colubrina, a key SDTF taxon, arrived at 10000 yrs b.p., which coincides with the onset of drought associated with an extended dry season. Lasting until 3000 yrs b.p., Holocene drought caused a floristic shift to more drought-tolerant taxa and a reduction in α-diversity (shown by declining palynological richness), but closed-canopy forest was maintained throughout. In contrast to the PDFA, the modern distribution of SDTF most likely represents the greatest spatial coverage of these forests in southern South America since glacial times. We find that temperature is a key climatic control upon the distribution of lowland South American SDTF over glacial-interglacial timescales, and seasonality of rainfall exerts a strong control on their floristic composition.
Resumo:
Accurate differentiation between tropical forest and savannah ecosystems in the fossil pollen record is hampered by the combination of: i) poor taxonomic resolution in pollen identification, and ii) the high species diversity of many lowland tropical families, i.e. with many different growth forms living in numerous environmental settings. These barriers to interpreting the fossil record hinder our understanding of the past distributions of different Neotropical ecosystems and consequently cloud our knowledge of past climatic, biodiversity and carbon storage patterns. Modern pollen studies facilitate an improved understanding of how ecosystems are represented by the pollen their plants produce and therefore aid interpretation of fossil pollen records. To understand how to differentiate ecosystems palynologically, it is essential that a consistent sampling method is used across ecosystems. However, to date, modern pollen studies from tropical South America have employed a variety of methodologies (e.g. pollen traps, moss polsters, soil samples). In this paper, we present the first modern pollen study from the Neotropics to examine the modern pollen rain from moist evergreen tropical forest (METF), semi-deciduous dry tropical forest (SDTF) and wooded savannah (cerradão) using a consistent sampling methodology (pollen traps). Pollen rain was sampled annually in September for the years 1999–2001 from within permanent vegetation study plots in, or near, the Noel Kempff Mercado National Park (NKMNP), Bolivia. Comparison of the modern pollen rain within these plots with detailed floristic inventories allowed estimates of the relative pollen productivity and dispersal for individual taxa to be made (% pollen/% vegetation or ‘p/v’). The applicability of these data to interpreting fossil records from lake sediments was then explored by comparison with pollen assemblages obtained from five lake surface samples.
Resumo:
REDD (reduced emissions from deforestation and degradation) aims to slow carbon releases caused by forest disturbance by making payments conditional on forest quality over time. Like earlier policies to slow deforestation, REDD must change the behaviour of forest degrading actors. Broadly, it can be implemented with payments to forest users in exchange for improved forest management, thus creating incentives; through payments for enforcement, thus creating disincentives; or through addressing external drivers such as urban charcoal demand. In Tanzania, community-based forest management (CBFM), a form of participatory forest management, was chosen by the Tanzania Forest Conservation Group, a local NGO, as a model for implementing REDD pilot programmes. Payments are made to villages that have the rights to forest carbon. In exchange, the villages must demonstrably reduce deforestation at the village level. In this paper, using this pilot programme as a case study, combined with a review of the literature, we provide insights for REDD implementation in sub-Saharan Africa. We pay particular attention to leakage, monitoring and enforcement. We suggest that implementing REDD through CBFM-type structures can create appropriate incentives and behaviour change when the recipients of the REDD funds are also the key drivers of forest change. When external forces drive forest change, however, REDD through CBFM-type structures becomes an enforcement programme with local communities rather than government agencies being responsible for the enforcement. That structure imposes costs on local communities, whose local authority limits the ability to address leakage outside the particular REDD village.