167 resultados para fed-batch fermentation
Resumo:
A structure-function study was carried out to increase knowledge of how glycosidic linkages and molecular weights of carbohydrates contribute toward the selectivity of fermentation by gut bacteria. Oligosaccharides with maltose as the common carbohydrate source were used. Potentially prebiotic alternansucrase and dextransucrase maltose acceptor products were synthesized and separated into different molecular weights using a Bio-gel P2 column. These fractions were characterized by matrix-assisted laser desorption/ionization time-of-flight. Nonprebiotic maltooligosaccharides with degrees of polymerization (DP) from three to seven were commercially obtained for comparison. Growth selectivity of fecal bacteria on these oligosaccharides was studied using an anaerobic in vitro fermentation method. In general, carbohydrates of DP3 showed the highest selectivity towards bifidobacteria; however, oligosaccharides with a higher molecular weight (DP6-DP7) also resulted in a selective fermentation. Oligosaccharides with DPs above seven did not promote the growth of "beneficial" bacteria. The knowledge of how specific structures modify the gut microflora could help to find new prebiotic oligosaccharides.
Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products
Resumo:
The metabolism of chlorogenic acid., naringin, and rutin, representative members of three common families of dietary polyphenols, the hydroxycinnamates, the flavanones, and the flavonols, respectively, was studied in an in vitro mixed culture model of the human colonic microflora. Time- and concentration-dependent degradation of all three compounds was observed, which was associated with the following metabolic events after cleavage of the ester or glycosidic bond: reduction of the aliphatic double bond of the resulting hydroxycinnamate caffeic acid residue; dehydroxylation and ring fission of the heterocyclic C-ring of the resulting deglycosylated flavanone, naringenin, and of the deglycosylated flavonol, quercetin (which differed depending on the substitution). The metabolic events, their sequences, and major phenolic end products, as identified by GC-MS or LC-MS/MS, were elucidated from the structural characteristics of the investigated compounds. The major phenolic end products identified were 3-D-hydroxyphenyl)propionic acid for chlorogenic acid, 3-(4-hydroxyphenyl)-propionic acid and 3-phenylpropionic acid for naringin, and 3-hydroxyphenylacetic acid and 3-(3-hydroxyphenyl)-propionic acid for rutin. The degree of degradation of the compounds studied was significantly influenced by the substrate concentration as well as individual variations in the composition of the fecal flora. The results support extensive metabolism of dietary polyphenols in the colon, depending on substrate concentration and residence time, with resultant formation of simple phenolics, which can be considered biomarkers of colonic metabolism if subsequently absorbed. It is also apparent that a relatively small number of phenolic degradation products are formed in the colon from the diverse group of natural polyphenols. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
A fermentation system was designed to model the human colonic microflora in vitro. The system provided a framework of mucin beads to encourage the adhesion of bacteria, which was encased within a dialysis membrane. The void between the beads was inoculated with faeces from human donors. Water and metabolites were removed from the fermentation by osmosis using a solution of polyethylene glycol (PEG). The system was concomitantly inoculated alongside a conventional single-stage chemostat. Three fermentations were carried out using inocula from three healthy human donors. Bacterial populations from the chemostat and biofilm system were enumerated using fluorescence in situ hybridization. The culture fluid was also analysed for its short-chain fatty acid (SCFA) content. A higher cell density was achieved in the biofilm fermentation system (taking into account the contribution made by the bead-associated bacteria) as compared with the chemostat, owing to the removal of water and metabolites. Evaluation of the bacterial populations revealed that the biofilm system was able to support two distinct groups of bacteria: bacteria growing in association with the mucin beads and planktonic bacteria in the culture fluid. Furthermore, distinct differences were observed between populations in the biofilm fermenter system and the chemostat, with the former supporting higher populations of clostridia and Escherichia coli. SCFA levels were lower in the biofilm system than in the chemostat, as in the former they were removed via the osmotic effect of the PEG. These experiments demonstrated the potential usefulness of the biofilm system for investigating the complexity of the human colonic microflora and the contribution made by sessile bacterial populations.
Resumo:
In vitro fermentations were carried out by using a model of the human colon to simulate microbial activities of lower gut bacteria. Bacterial populations (and their metabolic products) were evaluated under the effects of various fermentable substrates. Carbohydrates tested were polydextrose, lactitol, and fructo-oligosaccharide (FOS). Bacterial groups of interest were evaluated by fluorescence in situ hybridization as well as by species-specific PCR to determine bifidobacterial species and percent-G+C profiling of the bacterial communities present. Short-chain fatty acids (SCFA) produced during the fermentations were also evaluated. Polydextrose had a stimulatory effect upon colonic bifidobacteria at concentrations of 1 and 2% (using a single and pooled human fecal inoculum, respectively). The bifidogenic effect was sustained throughout all three vessels of the in vitro system (P = 0.01 seen in vessel 3), as corroborated by the bacterial community profile revealed by %G+C analysis. This substrate supported a wide variety of bifidobacteria and was the only substrate where Bifidobacterium infantis was detected. The fermentation of lactitol had a deleterious effect on both bifidobacterial and bacteroides populations (P = 0.01) and decreased total cell numbers. SCFA production was stimulated, however, particularly butyrate (beneficial for host colonocytes). FOS also had a stimulatory effect upon bifidobacterial and lactobacilli populations that used a single inoculum (P = 0.01 for all vessels) as well as a bifidogenic effect in vessels 2 and 3 (P = 0.01) when a pooled inoculum was used. A decrease in bifidobacteria throughout the model was reflected in the percent-G+C profiles.
Resumo:
The human colonic microflora has a central role in health and disease, being unique ill its complexity and range of functions. As such, dietary modulation is important for improved gut health, especially during the highly-sensitive stage of infancy. Diet call affect the composition of the gut microflora through the availability of different substrates for bacterial fermentation. Differences in gut microflora composition and incidence of infection exist between breast-fed and formula-fed infants, with the former thought to have improved protection. Historically, this improvement has been believed to be a result of the higher presence of reportedly-beneficial genera such as the bifidobacteria. As such, functional food ingredients such as prebiotics and probiotics could effect a beneficial modification in the composition and activities of gut microflora of infants by increasing positive flora components. The prebiotic approach aims to increase resident bacteria that are considered to be beneficial for human health, e.g. bifidobacteria and lactobacilli, while probiotics advocates the use of the live micro-organisms themselves in the diet. Both approaches have found their way into infant formula feeds and aim to more closely simulate the gut microbiota composition seen during breast-feeding.
Resumo:
The effect of pH and substrate dose on the fermentation profile of a number of commercial prebiotics was analysed in triplicate using stirred, pH and temperature controlled anaerobic batch culture fermentations, inoculated with a fresh faecal slurry from one of three healthy volunteers. Bacterial numbers were enumerated using fluorescence in situ hybridisation. The commercial prebiotics investigated were fructooligosaccharides (FOS), inulin, galactooligosaccharides (GOS), isomaltooligosaccharides (IMO) and lactulose. Two pH values were investigated, i.e. pH 6 and 6.8. Doses of 1% and 2% (w/v) were investigated, equivalent to approximately 4 and 8 g per day, respectively, in an adult diet. It was found that both pH and dose altered the bacterial composition. It was observed that FOS and inulin demonstrated the greatest bifidogenic effect at pH 6.8 and 1% (w/v) carbohydrate, whereas GOS, IMO and lactulose demonstrated their greatest bifidogenic effect at pH 6 and 2% (w/v) carbohydrate. From this we can conclude that various prebiotics demonstrate differing bifidogenic effects at different conditions in vitro. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
It is evident that quantitative information on different microbial groups and their contribution in terms of activity in the gastrointestinal (GI) tract of humans and animals is required in order to formulate functional diets targeting improved gut function and host health. In this work, quantitative information on levels and spatial distributions of Bacteroides spp, Eubacterium spp, Clostridium spp, Escherichia coli, Bifidobacterium spp and Lactobacillus/Enterococcus spp. along the porcine large intestine was investigated using 16S rRNA targeted probes and fluorescent in situ hybridisation (FISH). Caecum, ascending colon (AC) and rectum luminal digesta from three groups of individually housed growing pigs fed either a corn-soybean basal diet (CON diet) or a prebiotic diet containing 10 g/kg oligofructose (FOS diet) or trans-galactooligosaccharides (TOS diet) at the expense of cornstarch were analysed. DAPI staining was used to enumerate total number of cells in the samples. Populations of total cells, Bacteroides, Eubacterium, Clostridium and Bifidobacterium, declined significantly (P < 0.05) from caecum to rectum, and were not affected by dietary treatments. Populations of Lactobacillus/ Enterococcus and E coli did not differ throughout the large intestine. The relative percent (%) contribution of each bacterial group to the total cell count did not differ between caecum and rectum, with the exception of Eubacterium that was higher in the AC digesta. FISH analysis showed that the sum of all bacterial groups made up a small percentage of the total cells, which was 12.4%, 21.8% and 10.3% in caecum, AC and rectum, respectively. This supports the view that in swine, the diversity of GI microflora might be higher compared to other species. In terms of microflora metabolic activity, the substantially higher numerical trends seen in FOS and TOS treatments regarding total volatile fatty acid, acetate concentrations and glycolytic activities, it could be postulated that FOS and TOS promoted saccharolytic activities in the porcine colon. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fermentation properties of oligosaccharides derived from orange peel pectin were assessed in mixed fecal bacterial culture. The orange peel oligosaccharide fraction contained glucose in addition to rhamnogalacturonan and xylogalacturonan pectic oligosaccharides. Twenty-four-hour, temperature- and pH-controlled, stirred anaerobic fecal batch cultures were used to determine the effects that oligosaccharides derived from orange products had on the composition of the fecal microbiota. The effects were measured through fluorescent in situ hybridization to determine changes in bacterial populations, fermentation end products were analyzed by high-performance liquid chromatography to assess short-chain fatty acid concentrations, and subsequently, a prebiotic index (PI) was determined. Pectic oligosaccharides (POS) were able to increase the bifidobacterial and Eubacterium rectale numbers, albeit resulting in a lower prebiotic index than that from fructo-oligosaccharide metabolism. Orange albedo maintained the growth of most bacterial populations and gave a PI similar to that of soluble starch. Fermentation of POS resulted in an increase in the Eubacterium rectale numbers and concomitantly increased butyrate production. In conclusion, this study has shown that POS can have a beneficial effect on the fecal microflora; however, a classical prebiotic effect was not found. An increase in the Eubacterium rectale population was found, and butyrate levels increased, which is of potential benefit to the host.
Resumo:
The prebiotic effect of a pectic oligosaccharide-rich extract enzymatically derived from bergamot peel was studied using pure and mixed cultures of human faecal bacteria. This was compared to the prebiotic effect of fructo-oligosaccharides (FOS). Individual species of bifidobacteria and lactobacilli responded positively to the addition of the bergamot extract, which contained oligosaccharides in the range of three to seven. Fermentation studies were also carried out in controlled pH batch mixed human faecal cultures and changes in gut bacterial groups were monitored over 24 h by fluorescent in situ hybridisation, a culture-independent microbial assessment. Addition of the bergamot oligosaccharides (BOS) resulted in a high increase in the number of bifidobacteria and lactobacilli, whereas the clostridial population decreased. A prebiotic index (PI) was calculated for both FOS and BOS after 10 and 24 h incubation. Generally, higher PI scores were obtained after 10 h incubation, with BOS showing a greater value (6.90) than FOS (6.12).
Resumo:
The prebiotic potential of oat samples was investigated by in vitro shaker-flask anaerobic fermentations with human fecal cultures. The oat bran fraction was obtained by debranning and was compared with other carbon sources such as whole oat flour, glucose, and fructo-oligosaccharide. The oat bran fraction showed a decrease in culturable anaerobes and clostridia and an increase in bifidobacteria and lactobacilli populations. A similar pattern was observed in fructo-oligosaccharide. Butyrate production was higher in oat bran compared to glucose and similar to that in fructo-oligosaccharide. Production of propionate was higher in the two oat media than in fructo-oligosaccharide and glucose, which can be used as energy source by the liver. This study suggests that the oat bran fraction obtained by debranning is digested by the gut ecosystem and increases the population of beneficial bacteria in the indigenous gut microbiota. This medium also provides an energy source preferred by colonocytes when it is metabolized by the gut flora.
Recovery and purification of surfactin from fermentation broth by a two-step ultrafiltration process
Resumo:
Surfactin is a bacterial lipopeptide produced by Bacillus subtilis and it is a powerful surfactant, having also antiviral, antibacterial and antitumor properties. The recovery and purification of surfactin from complex fermentation broths is a major obstacle to its commercialization; therefore, two-step membrane filtration processes were evaluated using centrifugal and stirred cell devices while the mechanisms of separation were investigated by particle size and surface charge measurements. In a first step of ultrafiltration (UF-1), surfactin was retained effectively by membranes at above its critical micelle concentration (CMC); subsequently in UF-2, the retentate micelles were disrupted by addition of 50% (v/v) methanol solution to allow recovery of surfactin in the permeate. Main protein contaminants were effective]), retained by the membrane in UF-2. Ultrafiltration was carried out either using centrifugal devices with 30 and 10 kDa MWCO regenerated cellulose membranes, or a stirred cell device with 10 kDa MWCO polyethersulfone (PES) and regenerated cellulose (RC) membranes. Total rejection of surfactin was consistently observed in UF-1, while in UF-2 PES membranes had the lowest rejection coefficient of 0.08 +/- 0.04. It was found that disruption of surfactin micelles, aggregation of protein contaminants and electrostatic interactions in UF-2 can further improve the selectivity of the membrane based purification technique. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study was carried out to examine the effect or inulin (IN), fructooligosaccharide (FOS), polydextrose (POL) and isomaltooligosaccharides (ISO), alone and in combination, on gas production, gas composition and prebiotic effects. Static batch culture fermentation was performed with faecal samples from three healthy volunteers to study the volume and composition of gas generated and changes in bacterial populations. Four carbohydrates alone or mixed with one another (50:50) were examined. Prebiotic index (PI) was calculated and used to compare the prebiotic effect. The high amount of gas produced by IN was reduced by mixing it with FOS. No reduction in gas generation was observed when POL and ISO mixed with other substrates. It was found that the mixture of IN and FOS was effective in reducing the amount of gas produced while augmenting or maintaining their potential to Support the growth of bifidobacteria in Faecal batch culture as the highest PI was achieved with FOS alone and a mixture of FOS and IN. It was also found that high volume of gas was generated in presence of POL and ISO and they had lower prebiotic effect. The results of this study imply that a Mixture of prebiotics could prove effective in reducing the amount of gas generated by the gut microflora. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Dietary fibre has been proposed to decrease risk for colon cancer by altering the composition of intestinal microbes or their activity. In the present study, the changes in intestinal microbiota and its activity, and immunological characteristics, such as cyclo-oxygenase (COX)-2 gene expression in mucosa, in pigs fed with a high-energy-density diet, with and without supplementation of a soluble fibre (polydextrose; PDX) (30 g/d) were assessed in different intestinal compartments. PDX was gradually fermented throughout the intestine, and was still present in the distal colon. Irrespective of the diet throughout the intestine, of the four microbial groups determined by fluorescent in situ hybridisation, lactobacilli were found to be dominating, followed by clostridia and Bacteroides. Bifidobacteria represented a minority of the total intestinal microbiota. The numbers of bacteria increased approximately ten-fold from the distal small intestine to the distal colon. Concomitantly, also concentrations of SCFA and biogenic amines increased in the large intestine. In contrast, concentrations of luminal IgA decreased distally but the expression of mucosal COX-2 had a tendency to increase in the mucosa towards the distal colon. Addition of PDX to the diet significantly changed the fermentation endproducts, especially in the distal colon, whereas effects on bacteria] composition were rather minor. There was a reduction in concentrations of SCFA and tryptamine, and an increase in concentrations of spermidine in the colon upon PDX supplementation. Furthermore, PDX tended to decrease the expression of mucosal COX-2, therefore possibly reducing the risk of developing colon cancer-promoting conditions in the distal intestine.
Resumo:
This paper compares the volatile compound and fatty acid compositions of grilled beef from Aberdeen Angus and Holstein-Friesian steers slaughtered at 14 months, each breed fed from 6 months on either cereal-based concentrates or grass silage. Linoleic acid levels were higher in the muscle of concentrates-fed animals, which in the cooked meat resulted in increased levels of several compounds formed from linoleic acid decomposition. Levels of alpha-linolenic acid, and hence some volatile compounds derived from this fatty acid, were higher in the meat from the silage-fed steers. 1-Octen-3-ol, hexanal, 2-pentylfuran, trimethylamine, cis- and trans-2-octene and 4,5-dimethyl-2-pentyl-3-oxazoline were over 3 times higher in the steaks from the concentrates-fed steers, while grass-derived 1-phytene was present at much higher levels in the beef from the silage-fed steers. Only slight effects of breed were observed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Maillard reaction causes changes to protein structure and occurs in foods mainly during thermal treatment. Melanoidins, the final products of the Maillard reaction, may enter the gastrointestinal tract, which is populated by different species of bacteria. In this study, melanoidins were prepared from gluten and glucose. Their effect on the growth of faecal bacteria was determined in culture with genotype and phenotype probes to identify the different species involved. Analysis of peptic and tryptic digests showed that low molecular mass products are formed from the degradation of melanoidins. Results showed a change in the growth of bacteria. This in vitro study demonstrated that melanoidins, prepared from gluten and glucose, affect the growth of the gut microflora.