162 resultados para fecal indicator bacteria
Resumo:
Internal bacterial communities of synanthropic mites Acarus siro, Dermatophagoides farinae, Lepidoglyphus destructor, and Tyrophagus putrescentiae (Acari: Astigmata) were analyzed by culturing and culture-independent approaches from specimens obtained from laboratory colonies. Homogenates of surface-sterilized mites were used for cultivation on non-selective agar and DNA extraction. Isolated bacteria were identified by sequencing of the 16S rRNA gene. PCR amplified 16S rRNA genes were analyzed by terminal restriction fragment length polymorphism analysis (T-RFLP) and cloning sequencing. Fluorescence in situ hybridization using universal bacterial probes was used for direct bacterial localization. T-RFLP analysis of 16S rRNA gene revealed distinct species-specific bacterial communities. The results were further confirmed by cloning and sequencing (284 clones). L. destructor and D. farinae showed more diverse communities then A. siro and T. putrescentiae. In the cultivated part of the community, the mean CFUs from four mite species ranged from 5.2 × 102 to 1.4 × 103 per mite. D. farinae had significantly higher CFUs than the other species. Bacteria were located in the digestive and reproductive tract, parenchymatical tissue, and in bacteriocytes. Among the clones, Bartonella-like bacteria occurring in A. siro and T. putresecentiae represented a distinct group related to Bartonellaceae and to Bartonella-like symbionts of ants. The clones of high similarity to Xenorhabdus cabanillasii were found in L. destructor and D. farinae, and one clone related to Photorhabdus temperata in A. siro. Members of Sphingobacteriales cloned from D. farinae and A. siro clustered with the sequences of “Candidatus Cardinium hertigii” and as a separate novel cluster.
Resumo:
The in vitro fermentation selectivity of hydrolyzed caseinomacropeptide (CMP) glycosylated, via Maillard reaction (MR), with lactulose, galacto-oligosaccharides from lactose (GOSLa), and galacto-oligosaccharides from lactulose (GOSLu) was evaluated, using pH-controlled small-scale batch cultures at 37 °C under anaerobic conditions with human feces. After 10 and 24 h of fermentation, neoglyconjugates exerted a bifidogenic activity, similar to those of the corresponding prebiotic carbohydrates. No significant differences were found in Bacteroides, Lactobacillus�Enterococcus, Clostridium histolyticum subgroup, Atopobium and Clostridium coccoides�Eubacterium rectale populations. Concentrations of lactic acid and short-chain fatty acids (SCFA) produced during the fermentation of prebiotic carbohydrates were similar to those produced for their respective neoglycoconjugates at both fermentation times. These findings, joined with the functional properties attributed to CMP, could open up new applications of MR products involving prebiotics as novel multiple-functional ingredients with potential beneficial effects on human health.
Resumo:
In this work, in vitro fermentation of alternansucrase raffinose-derived oligosaccharides, previously fractionated according to their degree of polymerization (DP; from DP4 to DP10), was carried out using small-scale pH-controlled batch cultures at 37 °C under anaerobic conditions with human feces. Bifidogenic activity of oligosaccharides with DP4�6 similar to that of lactulose was observed; however, in general, a significant growth of lactic acid bacteria Bacteroides, Atopobium cluster, and Clostridium histolyticum group was not shown during incubation. Acetic acid was the main short chain fatty acid (SCFA) produced during the fermentation process; the highest levels of this acid were shown by alternansucrase raffinose acceptor pentasaccharides at 10 h (63.11 mM) and heptasaccharides at 24 h (54.71 mM). No significant differences between the gas volume produced by the mixture of raffinose-based oligosaccharides (DP5�DP10) and inulin after 24 h of incubation were detected, whereas lower gas volume was generated by DP4 oligosaccharides. These findings indicate that novel raffinose-derived oligosaccharides (DP4�DP10) could be a new source of prebiotic carbohydrates.
Resumo:
The selective fermentation by human gut bacteria of gluco-oligosaccharides obtained from the reaction between the glucosyl group of sucrose and cellobiose, catalyzed by dextransucrases (DSR) from Leuconostoc mesenteroides, has been evaluated. Oligosaccharides were fractionated according to their molecular weight, and their effect on the growth of different bacterial groups was studied. To determine the structure (position and configuration of glycosidic linkages)�function relationship, their properties were compared to those of DSR maltose acceptor products (DSRMal) and of recognized prebiotic carbohydrates (fructo-oligosaccharides, FOS). Cellobiose acceptor products (DSRCel) showed bifidogenic properties similar to those of FOS. However, no significant differences related to molecular weight or isomeric configurations were found for DSRCel and DSRMal products.
Resumo:
Red meat consumption is associated with an increased colorectal cancer (CRC) risk, which may be due to an increased endogenous formation of genotoxic N-nitroso compounds (NOCs). To assess the impact of red meat consumption on potential risk factors of CRC, we investigated the effect of a 7-day dietary red meat intervention in human subjects on endogenous NOC formation and fecal water genotoxicity in relation to genome-wide transcriptomic changes induced in colonic tissue. The intervention showed no effect on fecal NOC excretion but fecal water genotoxicity significantly increased in response to red meat intake. Colonic inflammation caused by inflammatory bowel disease, which has been suggested to stimulate endogenous nitrosation, did not influence fecal NOC excretion or fecal water genotoxicity. Transcriptomic analyses revealed that genes significantly correlating with the increase in fecal water genotoxicity were involved in biological pathways indicative of genotoxic effects, including modifications in DNA damage repair, cell cycle, and apoptosis pathways. Moreover, WNT signaling and nucleosome remodeling pathways were modulated which are implicated in human CRC development. We conclude that the gene expression changes identified in this study corroborate the genotoxic potential of diets high in red meat and point towards a potentially increased CRC risk in humans.
Resumo:
It is well known that gut bacteria contribute significantly to the host homeostasis, providing a range of benefits such as immune protection and vitamin synthesis. They also supply the host with a considerable amount of nutrients, making this ecosystem an essential metabolic organ. In the context of increasing evidence of the link between the gut flora and the metabolic syndrome, understanding the metabolic interaction between the host and its gut microbiota is becoming an important challenge of modern biology.1-4 Colonization (also referred to as normalization process) designates the establishment of micro-organisms in a former germ-free animal. While it is a natural process occurring at birth, it is also used in adult germ-free animals to control the gut floral ecosystem and further determine its impact on the host metabolism. A common procedure to control the colonization process is to use the gavage method with a single or a mixture of micro-organisms. This method results in a very quick colonization and presents the disadvantage of being extremely stressful5. It is therefore useful to minimize the stress and to obtain a slower colonization process to observe gradually the impact of bacterial establishment on the host metabolism. In this manuscript, we describe a procedure to assess the modification of hepatic metabolism during a gradual colonization process using a non-destructive metabolic profiling technique. We propose to monitor gut microbial colonization by assessing the gut microbial metabolic activity reflected by the urinary excretion of microbial co-metabolites by 1H NMR-based metabolic profiling. This allows an appreciation of the stability of gut microbial activity beyond the stable establishment of the gut microbial ecosystem usually assessed by monitoring fecal bacteria by DGGE (denaturing gradient gel electrophoresis).6 The colonization takes place in a conventional open environment and is initiated by a dirty litter soiled by conventional animals, which will serve as controls. Rodents being coprophagous animals, this ensures a homogenous colonization as previously described.7 Hepatic metabolic profiling is measured directly from an intact liver biopsy using 1H High Resolution Magic Angle Spinning NMR spectroscopy. This semi-quantitative technique offers a quick way to assess, without damaging the cell structure, the major metabolites such as triglycerides, glucose and glycogen in order to further estimate the complex interaction between the colonization process and the hepatic metabolism7-10. This method can also be applied to any tissue biopsy11,12.
Resumo:
Fermentation properties of oligosaccharides derived from lactulose (OsLu) and lactose (GOS) have been assessed in pH-controlled anaerobic batch cultures using lactulose and Vivinal-GOS as reference carbohydrates. Changes in gut bacterial populations and their metabolic activities were monitored over 24 h by fluorescent in situ hybridization (FISH) and by measurement of short-chain fatty acid (SCFA) production. Lactulose-derived oligosaccharides were selectively fermented by Bifidobacterium and lactic acid bacterial populations producing higher SCFA concentrations compared to GOS. The highest total SCFA production was from Vivinal-GOS > lactulose > OsLu > GOS. Longer incubation periods produced a selective fermentation of OsLu when they were used as a carbon source reaching the highest selective index scores. The new oligosaccharides may constitute a good alternative to lactulose, and they could belong to a new generation of prebiotics to be used as a functional ingredient for improving the composition of gut microflora.
Resumo:
Consumption of anthocyanins has been related with beneficial health effects. However, bioavailability studies have shown low concentration of anthocyanins in plasma and urine. In this study, we have investigated the bacterial-dependent metabolism of malvidin-3-glucoside, gallic acid and a mixture of anthocyanins using a pH-controlled, stirred, batch-culture fermentation system reflective of the distal human large intestine conditions. Most anthocyanins have disappeared after 5 h incubation while gallic acid remained constant through the first 5 h and was almost completely degraded following 24 h of fermentation. Incubation of malvidin-3-glucoside with fecal bacteria mainly resulted in the formation of syringic acid, while the mixture of anthocyanins resulted in formation of gallic, syringic and p-coumaric acids. All the anthocyanins tested enhanced significantly the growth of Bif idobacterium spp. and Lactobacillus−Enterococcus spp. These results suggest that anthocyanins and their metabolites may exert a positive modulation of the intestinal bacterial population.
Resumo:
1. Species-based indices are frequently employed as surrogates for wider biodiversity health and measures of environmental condition. Species selection is crucial in determining an indicators metric value and hence the validity of the interpretation of ecosystem condition and function it provides, yet an objective process to identify appropriate indicator species is frequently lacking. 2. An effective indicator needs to (i) be representative, reflecting the status of wider biodiversity; (ii) be reactive, acting as early-warning systems for detrimental changes in environmental conditions; (iii) respond to change in a predictable way. We present an objective, niche-based approach for species' selection, founded on a coarse categorisation of species' niche space and key resource requirements, which ensures the resultant indicator has these key attributes. 3. We use UK farmland birds as a case study to demonstrate this approach, identifying an optimal indicator set containing 12 species. In contrast to the 19 species included in the farmland bird index (FBI), a key UK biodiversity indicator that contributes to one of the UK Government's headline indicators of sustainability, the niche space occupied by these species fully encompasses that occupied by the wider community of 62 species. 4. We demonstrate that the response of these 12 species to land-use change is a strong correlate to that of the wider farmland bird community. Furthermore, the temporal dynamics of the index based on their population trends closely matches the population dynamics of the wider community. However, in both analyses, the magnitude of the change in our indicator was significantly greater, allowing this indicator to act as an early-warning system. 5. Ecological indicators are embedded in environmental management, sustainable development and biodiversity conservation policy and practice where they act as metrics against which progress towards national, regional and global targets can be measured. Adopting this niche-based approach for objective selection of indicator species will facilitate the development of sensitive and representative indices for a range of taxonomic groups, habitats and spatial scales.
Resumo:
Background: Antimicrobials are used to directly control bacterial infections in pet (ornamental) fish and are routinely added to the water these fish are shipped in to suppress the growth of potential pathogens during transport. Methodology/Principal Findings: To assess the potential effects of this sustained selection pressure, 127 Aeromonas spp. isolated from warm and cold water ornamental fish species were screened for tolerance to 34 antimicrobials. Representative isolates were also examined for the presence of 54 resistance genes by a combination of miniaturized microarray and conventional PCR. Forty-seven of 94 Aeromonas spp. isolates recovered from tropical ornamental fish and their carriage water were tolerant to >= 15 antibiotics, representing seven or more different classes of antimicrobial. The quinolone and fluoroquinolone resistance gene, qnrS2, was detected at high frequency (37% tested recent isolates were positive by PCR). Class 1 integrons, IncA/C broad host range plasmids and a range of other antibiotic resistance genes, including floR, blaTEM21, tet(A), tet(D), tet(E), qacE2, sul1, and a number of different dihydrofolate reductase and aminoglycoside transferase coding genes were also detected in carriage water samples and bacterial isolates. Conclusions: These data suggest that ornamental fish and their carriage water act as a reservoir for both multi-resistant bacteria and resistance genes.
Resumo:
We describe the development of a miniaturised microarray for the detection of antimicrobial resistance genes in Gram-negative bacteria. Included on the array are genes encoding resistance to aminoglycosides, trimethoprim, sulphonamides, tetracyclines and beta-lactams, including extended-spectrum beta-lactamases. Validation of the array with control strains demonstrated a 99% correlation between polymerase chain reaction and array results. There was also good correlation between phenotypic and genotypic results for a large panel of Escherichia coli and Salmonella isolates. Some differences were also seen in the number and type of resistance genes harboured by E. coli and Salmonella strains. The array provides an effective, fast and simple method for detection of resistance genes in clinical isolates suitable for use in diagnostic laboratories, which in future will help to understand the epidemiology of isolates and to detect gene linkage in bacterial populations. (C) 2008 Published by Elsevier B.V. and the International Society of Chemotherapy.
Resumo:
Red meat consumption causes a dose-dependent increase in fecal apparent total N-nitroso compounds (ATNC). The genotoxic effects of these ATNCs were investigated using two different Comet assay protocols to determine the genotoxicity of fecal water samples. Fecal water samples were obtained from two studies of a total of 21 individuals fed diets containing different amounts of red meat, protein, heme, and iron. The first protocol incubated the samples with HT-29 cells for 5 min at 4 degrees C, whereas the second protocol used a longer exposure time of 30 min and a higher incubation temperature of 37 degrees C. DNA strand breaks were quantified by the tail moment (DNA in the comet tail multiplied by the comet tail length). The results of the two Comet assay protocols were significantly correlated (r = 0.35, P = 0.003), however, only the second protocol resulted in detectable levels of DNA damage. Inter-individual effects were variable and there was no effect on fecal water genotoxicity by diet (P > 0.20), mean transit time (P = 0.588), or weight (P = 0.705). However, there was a highly significant effect of age (P = 0.019). There was no significant correlation between concentrations of ATNCs in fecal homogenates and fecal water genotoxicity (r = 0.04, P = 0.74). ATNC levels were lower in fecal water samples (272 microg/kg) compared to that of fecal homogenate samples (895 microg/kg) (P < 0.0001). Failure to find dietary effects on fecal water genotoxicity may therefore be attributed to individual variability and low levels of ATNCs in fecal water samples.
Resumo:
When analysing the secretome of the plant pathogen Pseudomonas syringae pv. tomato (Pst) DC3000, we identified hemolysin co-regulated protein (Hcp) as one of the secreted proteins. Hcp is assumed to be an extracellular component of the type VI secretion system (T6SS). Two copies of hcp genes are present in the Pst DC3000 genome, hcp1 (PSPTO_2539) and hcp2 (PSPTO_5435). We studied the expression patterns of hcp genes and tested the fitness of hcp knock-out mutants in host plant colonization and in inter-microbial competition. We found that the hcp2 gene is expressed, most actively at the stationary growth phase, and that the Hcp2 protein is secreted via T6SS and appears in the culture medium as covalently linked dimers. Expression of hcp2 is not induced in planta and it does not contribute to virulence or colonisation in tomato or Arabidopsis plants. Instead, hcp2 is required for survival in competition with enterobacteria and yeasts, and its function is associated with suppression of the growth of these competitors. This is the first report on bacterial T6SS-associated genes functioning in competition against yeast. Our results suggest that the T6SS of P. syringae may play an important role in bacterial fitness, allowing this plant pathogen to survive in conditions where it has to compete with other micro-organisms for resources.
Resumo:
Methods for assessing the sustainability of agricultural systems do often not fully (i) take into account the multifunctionality of agriculture, (ii) include multidimensionality, (iii) utilize and implement the assessment knowledge and (iv) identify conflicting goals and trade-offs. This chapter reviews seven recently developed multidisciplinary indicator-based assessment methods with respect to their contribution to these shortcomings. All approaches include (1) normative aspects such as goal setting, (2) systemic aspects such as a specification of scale of analysis and (3) a reproducible structure of the approach. The approaches can be categorized into three typologies: first, top-down farm assessments, which focus on field or farm assessment; second, top-down regional assessments, which assess the on-farm and the regional effects; and third, bottom-up, integrated participatory or transdisciplinary approaches, which focus on a regional scale. Our analysis shows that the bottom-up, integrated participatory or transdisciplinary approaches seem to better overcome the four shortcomings mentioned above.