130 resultados para feature representation
Resumo:
This paper derives exact discrete time representations for data generated by a continuous time autoregressive moving average (ARMA) system with mixed stock and flow data. The representations for systems comprised entirely of stocks or of flows are also given. In each case the discrete time representations are shown to be of ARMA form, the orders depending on those of the continuous time system. Three examples and applications are also provided, two of which concern the stationary ARMA(2, 1) model with stock variables (with applications to sunspot data and a short-term interest rate) and one concerning the nonstationary ARMA(2, 1) model with a flow variable (with an application to U.S. nondurable consumers’ expenditure). In all three examples the presence of an MA(1) component in the continuous time system has a dramatic impact on eradicating unaccounted-for serial correlation that is present in the discrete time version of the ARMA(2, 0) specification, even though the form of the discrete time model is ARMA(2, 1) for both models.
Resumo:
Coupled photosynthesis–stomatal conductance (A–gs) models are commonly used in ecosystem models to represent the exchange rate of CO2 and H2O between vegetation and the atmosphere. The ways these models account for water stress differ greatly among modelling schemes. This study provides insight into the impact of contrasting model configurations of water stress on the simulated leaf-level values of net photosynthesis (A), stomatal conductance (gs), the functional relationship among them and their ratio, the intrinsic water use efficiency (A/gs), as soil dries. A simple, yet versatile, normalized soil moisture dependent function was used to account for the effects of water stress on gs, on mesophyll conductance (gm) and on the biochemical capacity. Model output was compared to leaf-level values obtained from the literature. The sensitivity analyses emphasized the necessity to combine both stomatal and non-stomatal limitations of A in coupled A–gs models to accurately capture the observed functional relationships A vs. gs and A/gsvs. gs in response to drought. Accounting for water stress in coupled A–gs models by imposing either stomatal or biochemical limitations of A, as commonly practiced in most ecosystem models, failed to reproduce the observed functional relationship between key leaf gas exchange attributes. A quantitative limitation analysis revealed that the general pattern of C3 photosynthetic response to water stress may be well represented in coupled A–gs models by imposing the highest limitation strength to gm, then to gs and finally to the biochemical capacity.
Resumo:
This article critically examines the nature and quality of governance in community representation and civil society engagement in the context of trans-national large-scale mining, drawing on experiences in the Anosy Region of south-east Madagascar. An exploration of functional relationships between government, mining business and civil society stakeholders reveals an equivocal legitimacy of certain civil society representatives, created by state manipulation, which contributes to community disempowerment. The appointment of local government officials, rather than election, creates a hierarchy of upward dependencies and a culture where the majority of officials express similar views and political alliances. As a consequence, community resistance is suppressed. Voluntary mechanisms such as Corporate Social Responsibility (CSR) and the Extractive Industries Transparency Initiative (EITI) advocate community stakeholder engagement in decision making processes as a measure to achieve public accountability. In many developing countries, where there is a lack of transparency and high levels of corruption, the value of this engagement, however, is debatable. Findings from this study indicate that the power relationships which exist between stakeholders in the highly lucrative mining industry override efforts to achieve "good governance" through voluntary community engagement. The continuing challenge lies in identifying where the responsibility sits in order to address this power struggle to achieve fair representation.
Resumo:
In the early 2000s the threat of Highly Pathogenic Avian Influenza captured the attention of the world's media. While China is often considered the epicentre of the panzootic, few studies have explored coverage of this variant of avian flu in China. To address this issue, the authors examined the portrayal of Highly Pathogenic Avian Influenza across four Chinese newspapers at the local and national level. A textual analysis was performed on 160 articles across an eight-year period from 2001–2008. The study approach drew from Critical Discourse Analysis and Social Representation Theory. The headline analysis showed the extent that risk of the disease was subverted by the depiction of a strong and efficient ‘China’ that was a global leader in the fight against the disease. Ideological referents were called upon to stress teamwork in confronting the crisis. The diachronic analysis illustrated how the relationship between commercial interests, science and public health risks played out within the Chinese media.
Resumo:
This article extends the traditions of style-based criticism through an encounter with the insights that can be gained from engaging with filmmakers at work. By bringing into relationship two things normally thought of as separate: production history and disinterested critical analysis, the discussion aims to extend the subjects which criticism can appreciate as well as providing some insights on the creative process. Drawing on close analysis, on observations made during fieldwork and on access to earlier cuts of the film, this article looks at a range of interrelated decision-making anchored by the reading of a particular sequence. The article examines changes the film underwent in the different stages of production, and some of the inventions deployed to ensure key themes and ideas remained in play, as other elements changed. It draws conclusions which reveal perspectives on the filmmaking process, on collaboration, and on the creative response to material realities. The article reveals elements of the complexity of the process of the construction of image and soundtrack, and extends the range of filmmakers’ choices which are part of a critical dialogue. Has a relationship to ‘Sleeping with half open eyes: dreams and realities in The Cry of the Owl’, Movie: A Journal of Film Criticism, 1, (2010) which provides a broader interpretative context for the enquiry.
Resumo:
Ice cloud representation in general circulation models remains a challenging task, due to the lack of accurate observations and the complexity of microphysical processes. In this article, we evaluate the ice water content (IWC) and ice cloud fraction statistical distributions from the numerical weather prediction models of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office, exploiting the synergy between the CloudSat radar and CALIPSO lidar. Using the last three weeks of July 2006, we analyse the global ice cloud occurrence as a function of temperature and latitude and show that the models capture the main geographical and temperature-dependent distributions, but overestimate the ice cloud occurrence in the Tropics in the temperature range from −60 °C to −20 °C and in the Antarctic for temperatures higher than −20 °C, but underestimate ice cloud occurrence at very low temperatures. A global statistical comparison of the occurrence of grid-box mean IWC at different temperatures shows that both the mean and range of IWC increases with increasing temperature. Globally, the models capture most of the IWC variability in the temperature range between −60 °C and −5 °C, and also reproduce the observed latitudinal dependencies in the IWC distribution due to different meteorological regimes. Two versions of the ECMWF model are assessed. The recent operational version with a diagnostic representation of precipitating snow and mixed-phase ice cloud fails to represent the IWC distribution in the −20 °C to 0 °C range, but a new version with prognostic variables for liquid water, ice and snow is much closer to the observed distribution. The comparison of models and observations provides a much-needed analysis of the vertical distribution of IWC across the globe, highlighting the ability of the models to reproduce much of the observed variability as well as the deficiencies where further improvements are required.
Resumo:
We present an intercomparison and verification analysis of 20 GCMs (Global Circulation Models) included in the 4th IPCC assessment report regarding their representation of the hydrological cycle on the Danube river basin for 1961–2000 and for the 2161–2200 SRESA1B scenario runs. The basin-scale properties of the hydrological cycle are computed by spatially integrating the precipitation, evaporation, and runoff fields using the Voronoi-Thiessen tessellation formalism. The span of the model- simulated mean annual water balances is of the same order of magnitude of the observed Danube discharge of the Delta; the true value is within the range simulated by the models. Some land components seem to have deficiencies since there are cases of violation of water conservation when annual means are considered. The overall performance and the degree of agreement of the GCMs are comparable to those of the RCMs (Regional Climate Models) analyzed in a previous work, in spite of the much higher resolution and common nesting of the RCMs. The reanalyses are shown to feature several inconsistencies and cannot be used as a verification benchmark for the hydrological cycle in the Danubian region. In the scenario runs, for basically all models the water balance decreases, whereas its interannual variability increases. Changes in the strength of the hydrological cycle are not consistent among models: it is confirmed that capturing the impact of climate change on the hydrological cycle is not an easy task over land areas. Moreover, in several cases we find that qualitatively different behaviors emerge among the models: the ensemble mean does not represent any sort of average model, and often it falls between the models’ clusters.
Resumo:
Established following the Conservative Party's election victory in April 1992, the Department of National Heritage has been heralded as an important stage in the growing recognition of the significance of the leisure industry to Britain. By combining, for the first time, responsibility for sport, tourism, the arts, libraries, heritage, broadcasting and film, and by providing them with Cabinet representation, a unique opportunity has, seemingly, been provided to develop and promote the interests of leisure in Britain. This paper takes the view that although this initiative has been broadly welcomed, there are important inconsistencies which require attention. On the one hand the selection of the portfolio appears somewhat eclectic. On the other hand, it is questionable why such a department should have been developed at all. An inspection of the implicit ideology suggests that rather than the traditional use of the state to promote leisure interests, the introduction of the department signifies a shift to the use of leisure to promote the Government's interests. Thus the new Department of National Heritage is to be used as a central feature in the legitimation of the government's political programme. Rather than emphasising its traditional quasi-welfare role, the new place for leisure and heritage is firmly in the market economy. Whilst a leisured society may be the epitome of post-industrialism, therefore, the citizen rights claim for access to leisure activities can only be secured by engaging with the market. This legitimised construction of post- modern citizenship is at the centre of a new political order where choice has been replaced by means and where the classless paradigm championed by the Prime Minister will be a classlessness of constructed omission.
Resumo:
This paper proposes a solution to the problems associated with network latency within distributed virtual environments. It begins by discussing the advantages and disadvantages of synchronous and asynchronous distributed models, in the areas of user and object representation and user-to-user interaction. By introducing a hybrid solution, which utilises the concept of a causal surface, the advantages of both synchronous and asynchronous models are combined. Object distortion is a characteristic feature of the hybrid system, and this is proposed as a solution which facilitates dynamic real-time user collaboration. The final section covers implementation details, with reference to a prototype system available from the Internet.
Resumo:
This piece is a contribution to the exhibition catalogue of Barbadian / Canadian artist Joscelyn Gardner's exhibition, 'Bleeding & Breeding' curated by Olexander Wlasenko, January 14-February 12, 2012 in the Station Gallery, Whitby, Ontario, Canada. The piece examines the ways in which Gardner's Creole Portraits II (2007) and Creole Portraits III (2009) issue a provocative and carefully crafted contestation to the journals of the slave-owner and amateur botanist Thomas Thistlewood. It argues that while Thistlewood’s journals make raced and gendered bodies seemingly available to knowledge, incorporating them within the colonial archive as signs of subjection, Gardener’s portraits disrupt these acts of history and knowledge. Her artistic response marks a radical departure from the significant body of scholarship that has drawn on the Thistlewood journals to date. Creatively contesting his narratives’ dispossession of Creole female subjects and yet aware of the problems of innocent recovery, her works style representations that retain the consciousness and effect of historical erasure. Through an oxymoronic aesthetic that assembles a highly crafted verisimilitude alongside the condition of invisibility and brings atrocity into the orbit of the aesthetic, these portraits force us to question what stakes are involved in bringing the lives of the enslaved and violated back into regimes of representation.
Resumo:
There has been considerable interest in the climate impact of trends in stratospheric water vapor (SWV). However, the representation of the radiative properties of water vapor under stratospheric conditions remains poorly constrained across different radiation codes. This study examines the sensitivity of a detailed line-by-line (LBL) code, a Malkmus narrow-band model and two broadband GCM radiation codes to a uniform perturbation in SWV in the longwave spectral region. The choice of sampling rate in wave number space (Δν) in the LBL code is shown to be important for calculations of the instantaneous change in heating rate (ΔQ) and the instantaneous longwave radiative forcing (ΔFtrop). ΔQ varies by up to 50% for values of Δν spanning 5 orders of magnitude, and ΔFtrop varies by up to 10%. In the three less detailed codes, ΔQ differs by up to 45% at 100 hPa and 50% at 1 hPa compared to a LBL calculation. This causes differences of up to 70% in the equilibrium fixed dynamical heating temperature change due to the SWV perturbation. The stratosphere-adjusted radiative forcing differs by up to 96% across the less detailed codes. The results highlight an important source of uncertainty in quantifying and modeling the links between SWV trends and climate.
Resumo:
Although the somatosensory homunculus is a classically used description of the way somatosensory inputs are processed in the brain, the actual contributions of primary (SI) and secondary (SII) somatosensory cortices to the spatial coding of touch remain poorly understood. We studied adaptation of the fMRI BOLD response in the somatosensory cortex by delivering pairs of vibrotactile stimuli to the finger tips of the index and middle fingers. The first stimulus (adaptor) was delivered either to the index or to the middle finger of the right or left hand, whereas the second stimulus (test) was always administered to the left index finger. The overall BOLD response evoked by the stimulation was primarily contralateral in SI and was more bilateral in SII. However, our fMRI adaptation approach also revealed that both somatosensory cortices were sensitive to ipsilateral as well as to contralateral inputs. SI and SII adapted more after subsequent stimulation of homologous as compared with nonhomologous fingers, showing a distinction between different fingers. Most importantly, for both somatosensory cortices, this finger-specific adaptation occurred irrespective of whether the tactile stimulus was delivered to the same or to different hands. This result implies integration of contralateral and ipsilateral somatosensory inputs in SI as well as in SII. Our findings suggest that SI is more than a simple relay for sensory information and that both SI and SII contribute to the spatial coding of touch by discriminating between body parts (fingers) and by integrating the somatosensory input from the two sides of the body (hands).