101 resultados para fatty acid methyl ester
Resumo:
Purpose of review Evidence suggests that short-chain fatty acids (SCFAs) derived from microbial metabolism in the gut play a central role in host homeostasis. The present review describes the current understanding and physiological implications of SCFAs derived from microbial metabolism of nondigestible carbohydrates. Recent findings Recent studies indicate a role for SCFAs, in particular propionate and butyrate, in the metabolic and inflammatory disorders such as obesity, diabetes and inflammatory bowel diseases, through the activation of specific G-protein-coupled receptors and modification of transcription factors. Established prebiotics, such as fructooligosaccharides and galactooligosaccharides, which support the growth of Bifidobacteria, mainly mediate acetate production. Thus, recent identification of prebiotics which are able to stimulate the production of propionate and butyrate by benign saccharolytic populations in the colon is of interest. Summary Manipulation of saccharolytic fermentation by prebiotic substrates is beginning to provide information on structure–function relationships relating to the production of SCFAs, which have multiple roles in host homeostasis.
Resumo:
Increased intake of dietary carbohydrate that is fermented in the colon by the microbiota has been reported to decrease body weight, although the mechanism remains unclear. Here we use in vivo11C-acetate and PET-CT scanning to show that colonic acetate crosses the blood–brain barrier and is taken up by the brain. Intraperitoneal acetate results in appetite suppression and hypothalamic neuronal activation patterning. We also show that acetate administration is associated with activation of acetyl-CoA carboxylase and changes in the expression profiles of regulatory neuropeptides that favour appetite suppression. Furthermore, we demonstrate through 13C high-resolution magic-angle-spinning that 13C acetate from fermentation of 13C-labelled carbohydrate in the colon increases hypothalamic 13C acetate above baseline levels. Hypothalamic 13C acetate regionally increases the 13C labelling of the glutamate–glutamine and GABA neuroglial cycles, with hypothalamic 13C lactate reaching higher levels than the ‘remaining brain’. These observations suggest that acetate has a direct role in central appetite regulation.
Resumo:
Various studies have indicated a relationship between enteric methane (CH4) production and milk fatty acid (FA) profiles of dairy cattle. However, the number of studies investigating such a relationship is limited and the direct relationships reported are mainly obtained by variation in CH4 production and milk FA concentration induced by dietary lipid supplements. The aim of this study was to perform a meta-analysis to quantify relationships between CH4 yield (per unit of feed and unit of milk) and milk FA profile in dairy cattle and to develop equations to predict CH4 yield based on milk FA profile of cows fed a wide variety of diets. Data from 8 experiments encompassing 30 different dietary treatments and 146 observations were included. Yield of CH4 measured in these experiments was 21.5 ± 2.46 g/kg of dry matter intake (DMI) and 13.9 ± 2.30 g/ kg of fat- and protein-corrected milk (FPCM). Correlation coefficients were chosen as effect size of the relationship between CH4 yield and individual milk FA concentration (g/100 g of FA). Average true correlation coefficients were estimated by a random-effects model. Milk FA concentrations of C6:0, C8:0, C10:0, C16:0, and C16:0-iso were significantly or tended to be positively related to CH4 yield per unit of feed. Concentrations of trans-6+7+8+9 C18:1, trans-10+11 C18:1, cis- 11 C18:1, cis-12 C18:1, cis-13 C18:1, trans-16+cis-14 C18:1, and cis-9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of feed. Milk FA concentrations of C10:0, C12:0, C14:0-iso, C14:0, cis-9 C14:1, C15:0, and C16:0 were significantly or tended to be positively related to CH4 yield per unit of milk. Concentrations of C4:0, C18:0, trans-10+11 C18:1, cis-9 C18:1, cis-11 C18:1, and cis- 9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of milk. Mixed model multiple regression and a stepwise selection procedure of milk FA based on the Bayesian information criterion to predict CH4 yield with milk FA as input (g/100 g of FA) resulted in the following prediction equations: CH4 (g/kg of DMI) = 23.39 + 9.74 × C16:0- iso – 1.06 × trans-10+11 C18:1 – 1.75 × cis-9,12 C18:2 (R2 = 0.54), and CH4 (g/kg of FPCM) = 21.13 – 1.38 × C4:0 + 8.53 × C16:0-iso – 0.22 × cis-9 C18:1 – 0.59 × trans-10+11 C18:1 (R2 = 0.47). This indicated that milk FA profile has a moderate potential for predicting CH4 yield per unit of feed and a slightly lower potential for predicting CH4 yield per unit of milk. Key words: methane , milk fatty acid profile , metaanalysis , dairy cattle
Resumo:
This study compared fat and fatty acids in cooked retail chicken meat from conventional and organic systems. Fat contents were 1.7, 5.2, 7.1 and 12.9 g/100 g cooked weight in skinless breast, breast with skin, skinless leg and leg with skin respectively, with organic meat containing less fat overall (P < 0.01). Meat was rich in cis-monounsaturated fatty acids, although organic meat contained less than did conventional meat (1850 vs. 2538 mg/100 g; P < 0.001). Organic meat was also lower (P < 0.001) in 18:3 n−3 (115 vs. 180 mg/100 g) and, whilst it contained more (P < 0.001) docosahexaenoic acid (30.9 vs. 13.7 mg/100 g), this was due to the large effect of one supermarket. This system by supermarket interaction suggests that poultry meat labelled as organic is not a guarantee of higher long chain n−3 fatty acids. Overall there were few major differences in fatty acid contents/profiles between organic and conventional meat that were consistent across all supermarkets.
Resumo:
Background and Aims: We have reported that adverse effects on flow-mediated dilation of an acute elevation of non-esterified fatty acids rich in saturated fat (SFA) are reversed following addition of long-chain (LC) n-3 polyunsaturated fatty acids (PUFA), and hypothesised that these effects may be mediated through alterations in insulin signalling pathways. In a subgroup, we explored the effects of raised NEFA enriched with SFA, with or without LC n-3 PUFA, on whole body insulin sensitivity (SI) and responsiveness of the endothelium to insulin infusion. Methods and Results: Thirty adults (mean age 27.8 y, BMI 23.2 kg/m2) consumed oral fat loads on separate occasions with continuous heparin infusion to elevate NEFA between 60-390 min. For the final 150 min, a hyperinsulinaemic-euglycaemic clamp was performed, whilst FMD and circulating markers of endothelial function were measured at baseline, pre-clamp (240 min) and post-clamp (390 min). NEFA elevation during the SFA-rich drinks was associated with impaired FMD (P=0.027) whilst SFA+LC n-3 PUFA improved FMD at 240 min (P=0.003). In males, insulin infusion attenuated the increase in FMD with SFA+LC n-3 PUFA (P=0.049), with SI 10% greater with SFA+LC n-3 PUFA than SFA (P=0.041). Conclusion: This study provides evidence that NEFA composition during acute elevation influences both FMD and SI, with some indication of a difference by gender. However our findings are not consistent with the hypothesis that the effects of fatty acids on endothelial function and SI operate through a common pathway. Trial registered at clinicaltrials.gov, NCT01351324.
Resumo:
Replacing dietary grass silage (GS) with maize silage (MS) and dietary fat supplements may reduce milk concentration of specific saturated fatty acids (SFA) and can reduce methane production by dairy cows. The present study investigated the effect of feeding an extruded linseed supplement on milk fatty acid (FA) composition and methane production of lactating dairy cows, and whether basal forage type, in diets formulated for similar neutral detergent fiber and starch, altered the response to the extruded linseed supplement. Four mid-lactation Holstein-Friesian cows were fed diets as total mixed rations, containing either high proportions of MS or GS, both with or without extruded linseed supplement, in a 4 × 4 Latin square design experiment with 28-d periods. Diets contained 500 g of forage/kg of dry matter (DM) containing MS and GS in proportions (DM basis) of either 75:25 or 25:75 for high MS or high GS diets, respectively. Extruded linseed supplement (275 g/kg ether extract, DM basis) was included in treatment diets at 50 g/kg of DM. Milk yields, DM intake, milk composition, and methane production were measured at the end of each experimental period when cows were housed in respiration chambers. Whereas DM intake was higher for the MS-based diet, forage type and extruded linseed had no significant effect on milk yield, milk fat, protein, or lactose concentration, methane production, or methane per kilogram of DM intake or milk yield. Total milk fat SFA concentrations were lower with MS compared with GS-based diets (65.4 vs. 68.4 g/100 g of FA, respectively) and with extruded linseed compared with no extruded linseed (65.2 vs. 68.6 g/100 g of FA, respectively), and these effects were additive. Concentrations of total trans FA were higher with MS compared with GS-based diets (7.0 vs. 5.4 g/100 g of FA, respectively) and when extruded linseed was fed (6.8 vs. 5.6 g/100 g of FA, respectively). Total n-3 FA were higher when extruded linseed was fed compared with no extruded linseed (1.2 vs. 0.8 g/100 g of FA, respectively), whereas total n-6 polyunsaturated FA were higher when feeding MS compared with GS (2.5 vs. 2.1 g/100 g of FA, respectively). Feeding extruded linseed and MS both provided potentially beneficial decreases in SFA concentration of milk, and no significant interactions were found between extruded linseed supplementation and forage type. However, both MS and extruded linseed increased trans FA concentration in milk fat. Neither MS nor extruded linseed had significant effects on methane production or yield, but the amounts of supplemental lipid provided by extruded linseed were relatively small.
Resumo:
Many studies show concentrations of nutritionally desirable fatty acids in bovine milk are lower when cows have no access to grazing, leading to seasonal fluctuations in milk quality if cows are housed for part of the year. This study investigated the potential to improve the fatty acid profiles of bovine milk by oilseed supplementation (rolled linseed and rapeseed) during a period of indoor feeding in both organic and conventional production systems. Both linseed and rapeseed increased the concentrations of total monounsaturated fatty acids, vaccenic acid, oleic acid and rumenic acid in milk, but decreased the concentration of the total and certain individual saturated fatty acids. Linseed resulted in greater changes than rapeseed, and also significantly increased the concentrations of α-linolenic acid, total polyunsaturated fatty acids and total omega-3 fatty acids. The response to oilseed supplementation, with respect to increasing concentrations of vaccenic acid and omega-3 fatty acids, appeared more efficient for organic compared with conventional diets.
Resumo:
This work aimed to test if milk preserved with bronopol can be reliably used for fatty acid determination. Dairy production and milk quality are often monitored regularly to assess performance and contribute to selection indices. With evidence that fat composition can be influenced by selective breeding, there might be an interest in using samples collected in routine testing to evaluate individual cow fatty acid profiles, contributing to breeding indices. However, most recording services use a preservative such as bronopol and there is no published record if this influences subsequent fatty acid analysis. This study used milk from an oil seed supplementation trial, generating a wide range of milk fatty acid profiles, to test if the concentration of 31 individual fatty acids determined by GC were influenced by bronopol. Provided preserved samples are subsequently frozen, milk treated with bronopol can reliably be used to evaluate fatty acid composition in most cases; however bronopol might influence a few long-chain fatty acids present in relatively low concentrations. This is one small step towards simplifying milk compositional analysis but it could ultimately streamline the inclusion of milk fat quality into breeding indices, either with a view to 'healthier' milk or potentially reducing methane output and the environmental impact of dairy production.