118 resultados para developmental cycle
Resumo:
There is evidence to suggest that insulin sensitivity may vary in response to changes in sex hormone levels. However, the results Of human studies designed to investigate changes in insulin sensitivity through the menstrual cycle have proved inconclusive. The aims of this Study were to 1) evaluate the impact of menstrual cycle phase on insulin sensitivity measures and 2) determine the variability Of insulin sensitivity measures within the same menstrual cycle phase. A controlled observational study of 13 healthy premenopausal women, not taking any hormone preparation and having regular menstrual cycles, was conducted. Insulin sensitivity (Si) and glucose effectiveness (Sg) were measured using an intravenous glucose tolerance test (IVGTT) with minimal model analysis. Additional Surrogate measures Of insulin sensitivity were calculated (homoeostasis model for insulin resistance [HOMA IR], quantitative insulin-to-glucose check index [QUICKI] and revised QUICKI [rQUICKI]), as well as plasma lipids. Each woman was tested in the luteal and follicular phases of her Menstrual cycle, and duplicate measures were taken in one phase of the cycle. No significant differences in insulin sensitivity (measured by the IVGTT or Surrogate markers) or plasma lipids were reported between the two phases of the menstrual cycle or between duplicate measures within the same phase. It was Concluded that variability in measures of insulin sensitivity were similar within and between menstrual phases.
Resumo:
Secretion of LH and FSH from the anterior pituitary is regulated primarily by hypothalamic GnRH and ovarian steroid hormones. More recent evidence indicates regulatory roles for certain members of the transforming growth factor beta (TGF beta) superfamily including inhibin and activin. The aim of this study was to identify expression of mRNAs encoding key receptors and ligands of the inhibin/activin system in the hen pituitary gland and to monitor their expression throughout the 24-25-h ovulatory cycle. Hens maintained on long days (16 h light/8 h dark) were killed 20, 12, 6 and 2 h before predicted ovulation of a midsequence egg (n = 8 per group). Anterior pituitary glands were removed, RNA extracted and cDNA synthesized. Plasma concentrations of LH, FSH, progesterone and inhibin A were measured. Real-time quantitative PCR was used to quantify pituitary expression of mRNAs encoding betaglycan, activin receptor (ActR) subtypes (type I, IIA), GnRH receptor (GnP,H-R), LH beta subunit, FSH beta subunit and GAPDH. Levels of mRNA for inhibin/activin beta A and beta B subunits, inhibin alpha subunit, follistatin and ActRIIB mRNA in pituitary were undetectable by quantitative PCR (< 2 amol/reaction). Significant changes in expression (P < 0.05) of ActRIIA and betaglycan mRNA were found, both peaking 6 h before ovulation just prior to the preovulatory LH surge and reaching a nadir 2 h before ovulation, just after the LH surge. There were no significant changes in expression of ActRI mRNA throughout the cycle although values were correlated with mRNA levels for both ActRIIA (r=0.77; P < 0.001) and betaglycan (r=0.45; P < 0.01). Expression of GnRH-R mRNA was lowest 20 h before ovulation and highest (P < 0.05) 6 h before ovulation; values were weakly correlated with betaglycan (r=0.33; P=0.06) and ActRIIA (r=0.34; P=0.06) mRNA levels. Expression of mRNAs encoding LH beta and FSH beta subunit were both lowest (P < 0.05) after the LH surge, 2 h before ovulation. These results are consistent with an endocrine, but not a local intrapituitary, role of inhibin-related proteins in modulating gonadotroph function during the ovulatory cycle of the hen, potentially through interaction with betaglycan and ActRIIA. In contrast to mammals, intrapituitary expression of inhibin/activin subunits and follistatin appears to be extremely low or absent in the domestic fowl.
Resumo:
Endothelial cells (EC) express constitutively two major isofonns (Nox2 and Nox4) of the catalytic subunit of NADPH oxidase, which is a major source of endothelial reactive oxygen species. However, the individual roles of these Noxes in endothelial function remain unclear. We have investigated the role of Nox2 in nutrient deprivation-induced cell cycle arrest and apoptosis. In proliferating human dermal microvascular EC, Nox2 mRNA expression was low relative to Nox4 (Nox2:Nox4 similar to 1:13), but was upregulated 24 It after starvation and increased to 8 +/- 3.5-fold at 36 h of starvation. Accompanying the upregulation of Nox2, there was a 2.28 +/- 0.18-fold increase in O-2(-); production, a dramatic induction of p21(cip1) and p53, cell cycle arrest, and the onset of apoptosis (all p < 0.05). All these changes were inhibited significantly by in vitro deletion of Nox2 expression and in coronary microvascular EC isolated from Nox2 knockout mice. In Nox2 knockout cells, although there was a 3.8 +/- 0.5fold increase in Nox4 mRNA expression after 36 h of starvation (p < 0.01), neither production nor the p21(cip1) or p53 expression was increased significantly and only 0.46% of cells were apoptotic. In conclusion, Nox2-derived O-2(-), through the modulation of p21(cip1) and p53 expression, participates in endothelial cell cycle regulation and apoptosis. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
In recent years, we have witnessed major advances in our understanding of the mammalian cell cycle and how it is regulated. Normal mammalian cellular proliferation is tightly regulated at each phase of the cell cycle by the activation and deactivation of a series of proteins that constitute the cell cycle machinery. This review article describes the various phases of the mammalian cell cycle and focuses on the cell cycle regulatory molecules that act at each stage to ensure normal cellular progression.
Resumo:
We have investigated the cellular responses to hydrostatic pressure by using the fission yeast Schizosaccharomyces pombe as a model system. Exposure to sublethal levels of hydrostatic pressure resulted in G2 cell cycle delay. This delay resulted from Cdc2 tyrosine-15 (Y-15) phosphorylation, and it was abrogated by simultaneous disruption of the Cdc2 kinase regulators Cdc25 and Wee1. However, cell cycle delay was independent of the DNA damage, cytokinesis, and cell size checkpoints, suggesting a novel mechanism of Cdc2-Y15 phosphorylation in response to hydrostatic pressure. Spc1/Sty1 mitogen-activated protein (MAP) kinase, a conserved member of the eukaryotic stress-activated p38, mitogen-activated protein (MAP) kinase family, was rapidly activated after pressure stress, and it was required for cell cycle recovery under these conditions, in part through promoting polo kinase (Plo1) phosphorylation on serine 402. Moreover, the Spc1 MAP kinase pathway played a key role in maintaining cell viability under hydrostatic pressure stress through the bZip transcription factor, Atf1. Further analysis revealed that prestressing cells with heat increased barotolerance, suggesting adaptational cross-talk between these stress responses. These findings provide new insight into eukaryotic homeostasis after exposure to pressure stress.
Resumo:
Cardiac repair following myocardial injury is restricted due to the limited proliferative potential of adult cardiomyocytes. The ability of mammalian cardiomyocytes to proliferate is lost shortly after birth as cardiomyocytes withdraw from the cell cycle and differentiate. We do not fully understand the molecular and cellular mechanisms that regulate this cell cycle withdrawal, although if we could it might lead to the discovery of novel therapeutic targets for improving cardiac repair following myocardial injury. For the last decade, researchers have investigated cardiomyocyte cell cycle control, commonly using transgenic mouse models or recombinant adenoviruses to manipulate cell cycle regulators in vivo or in vitro. This review discusses cardiomyocyte cell cycle regulation and summarises recent data from studies manipulating the expressions and activities of cell cycle regulators in cardiomyocytes. The validity of therapeutic strategies that aim to reinstate the proliferative potential of cardiomyocytes to improve myocardial repair following injury will be discussed. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Coronary artery disease is one of the most common heart pathologies. Restriction of blood flow to the heart by atherosclerotic lesions, leading to angina pectoris and myocardial infarction, damages the heart, resulting in impaired cardiac function. Damaged myocardium is replaced by scar tissue since surviving cardiomyocytes are unable to proliferate to replace lost heart tissue. Although narrowing of the coronary arteries can be treated successfully using coronary revascularisation procedures, re-occlusion of the treated vessels remains a significant clinical problem. Cell cycle control mechanisms are key in both the impaired cardiac repair by surviving cardiomyocytes and re-narrowing of treated vessels by maladaptive proliferation of vascular smooth muscle cells. Strategies targeting the cell cycle machinery in the heart and vasculature offer promise both for the improvement of cardiac repair following MI and the prevention of restenosis and bypass graft failure following revascularisation procedures.
Resumo:
Background: Shifting gaze and attention ahead of the hand is a natural component in the performance of skilled manual actions. Very few studies have examined the precise co-ordination between the eye and hand in children with Developmental Coordination Disorder (DCD). Methods This study directly assessed the maturity of eye-hand co-ordination in children with DCD. A double-step pointing task was used to investigate the coupling of the eye and hand in 7-year-old children with and without DCD. Sequential targets were presented on a computer screen, and eye and hand movements were recorded simultaneously. Results There were no differences between typically developing (TD) and DCD groups when completing fast single-target tasks. There were very few differences in the completion of the first movement in the double-step tasks, but differences did occur during the second sequential movement. One factor appeared to be the propensity for the DCD children to delay their hand movement until some period after the eye had landed on the target. This resulted in a marked increase in eye-hand lead during the second movement, disrupting the close coupling and leading to a slower and less accurate hand movement among children with DCD. Conclusions In contrast to skilled adults, both groups of children preferred to foveate the target prior to initiating a hand movement if time allowed. The TD children, however, were more able to reduce this foveation period and shift towards a feedforward mode of control for hand movements. The children with DCD persevered with a look-then-move strategy, which led to an increase in error. For the group of DCD children in this study, there was no evidence of a problem in speed or accuracy of simple movements, but there was a difficulty in concatenating the sequential shifts of gaze and hand required for the completion of everyday tasks or typical assessment items.
Resumo:
Purpose. Previous research has shown that children with Developmental Coordination Disorder (DCD) have poorly developed strategies for allocating attention. This study examines the allocation of attention and integration of visuo-spatial and motor systems in children with DCD in a motor (look+hit condition) and a motor-free (look condition) task. Method. Three groups of control children were used to compare the performance of a group of children with DCD. Children were seated in front of a central fixation point and six peripheral targets, and were asked to look at or hit targets when illuminated. Saccade/hand movement latencies were measured on gap trials (gap between fixation offset and target onset) and overlap trials (fixation offset and target onset overlapped). Results. DCD children were not slower than controls to disengage attention during the look condition. However, during the look+hit condition the DCD children showed a prolonged disengagement period, which was also seen in younger control children. Conclusions. The results suggest that DCD children may have deficits in the allocation of attention for action, in both the speed of onset of a movement and the accuracy of the movement. It is concluded that attention disengagement may contribute to problems of visuo-motor integration in DCD.
Resumo:
This study investigated self-esteem in children with developmental coordination disorder (DCD). Fifteen children between the ages of 8 and 12 years diagnosed with DCD were compared with a typically developing group comprising 30 children with average and good motor abilities, using measures of perceived competence, social support and self-esteem. The types of coping strategy generated in response to example vignettes were also compared. There was no significant difference between the groups in global self-esteem, but the children with DCD reported lower athletic and scholastic competence than their typically developing peers. No difference was found between the groups in level of perceived social support. The DCD group generated fewer coping strategies overall, but more passive and avoidant strategies than the typically developing children. The implications of the study are discussed with regard to future research directions, such as the investigation of the effects of motor skill intervention on self-esteem and the development of strategies to protect children's self-esteem.
Resumo:
Developmental stammering (DS, also known as idiopathic stammering or stuttering) is a disorder of speech fluency that affects approximately 0.75% to 1% of the populations of Great Britain, Australia and America,(1-4) although a recent study puts the point prevalence figure at between 1% and 3% in the UK.(5) Prevalence is generally thought to be similar amongst communities worldwide, although there have been occasional suggestions that this figure might be lower in countries where there is less pressure on verbal acuity.(6) DS may be distinguished from neurogenic stammering, which can occur subsequent to neurological damage of various aetiologies (for example, stroke, tumour, degenerative disease) and psychogenic stammering, whose onset can be related to a significant psychological event such as bereavement. While a diagnosis of neurogenic stammering might be made in early childhood and adolescence, both neurogenic and psychogenic types are typically associated with an adult onset. DS is by far the most common form of stammering and usually develops in the pre-school years. The mean age at onset is 4 2, with 75% of cases beginning before the age of 6.(1) However, occasionally, stammering onset may be seen as late as 12 or 13 years of age.
Resumo:
The comparison of cognitive and linguistic skills in individuals with developmental disorders is fraught with methodological and psychometric difficulties. In this paper, we illustrate some of these issues by comparing the receptive vocabulary knowledge and non-verbal reasoning abilities of 41 children with Williams syndrome, a genetic disorder in which language abilities are often claimed to be relatively strong. Data from this group were compared with data from typically developing children, children with Down syndrome, and children with non-specific learning difficulties using a number of approaches including comparison of age-equivalent scores, matching, analysis of covariance, and regression-based standardization. Across these analyses children with Williams syndrome consistently demonstrated relatively good receptive vocabulary knowledge, although this effect appeared strongest in the oldest children.